Skip to main content

Asymptotic Quasi-completeness and ZFC

  • Chapter
  • First Online:
Contradictions, from Consistency to Inconsistency

Part of the book series: Trends in Logic ((TREN,volume 47))

Abstract

The axioms ZFC of first order set theory are one of the best and most widely accepted, if not perfect, foundations used in mathematics. Just as the axioms of first order Peano Arithmetic, ZFC axioms form a recursively enumerable list of axioms, and are, then, subject to Gödel’s Incompleteness Theorems. Hence, if they are assumed to be consistent, they are necessarily incomplete. This can be witnessed by various concrete statements, including the celebrated Continuum Hypothesis CH. The independence results about the infinite cardinals are so abundant that it often appears that ZFC can basically prove very little about such cardinals. However, we put forward a thesis that ZFC is actually very powerful at some infinite cardinals, but not at all of them. We have to move away from the first few and to look at limits of uncountable cardinals, such as \( \aleph _\omega \). Specifically, we work with singular cardinals (which are necessarily limits) and we illustrate that at such cardinals there is a very serious limit to independence and that many statements which are known to be independent on regular cardinals become provable or refutable by ZFC at singulars. In a certain sense, which we explain, the behavior of the set-theoretic universe is asymptotically determined at singular cardinals by the behavior that the universe assumes at the smaller regular cardinals. Foundationally, ZFC provides an asymptotically univocal image of the universe of sets around the singular cardinals. We also give a philosophical view accounting for the relevance of these claims in a platonistic perspective which is different from traditional mathematical platonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the common abuse of notation, we call F ‘power set function’, even though it is in fact a class-function.

References

  1. Ackerman, Diana. 1978. De re propositional attitudes toward integers. The Southwestern Journal of Philosophy 9 (2): 145–153.

    Article  Google Scholar 

  2. Ackermann, Wilhelm. 1937. Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathematische Annalen 114 (1): 305–315.

    Article  Google Scholar 

  3. Azzouni, Jody. 2009. Empty de re attitudes about numbers. Philosophia Mathematica, ser. III, 17 (2):163–188.

    Google Scholar 

  4. Boolos, George. 1999. Logic, Logic and Logic. Cambridge (Mass): Harvard University Press.

    Google Scholar 

  5. Bukovský, Lev. 1965. The continuum problem and powers of alephs. Commentationes Mathematicae Universitatis Carolinae 6: 181–197.

    Google Scholar 

  6. Burge, Tyler. 2007. Postscipt to “Belief De Re”. In Foundations of Mind. Philosophical Essays, ed. by Tyler Burge, vol. 2, pp. 65–81. Oxford: Clarendon Press.

    Google Scholar 

  7. Chung Chang, Chen, and H. Jeremy Keisler. 1990. Model Theory, 3rd edn. Amsterdam: North Holland.

    Google Scholar 

  8. Cohen, Paul. 1963. The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America 50 (6): 1143–1148.

    Article  Google Scholar 

  9. Cummings, James, Mirna Džamonja, Menachem Magidor, Charles Morgan, and Saharon Shelah. 2017. A framework for forcing constructions at successors of singular cardinals. TAMS 369 (10): 7405–7441.

    Google Scholar 

  10. Dedekind, Richard. 1888. Was sind und was sollen die Zahlen? F. Viewing and Sohn in Braunschweig.

    Google Scholar 

  11. Devlin, Keith I., and R.B. Jensen. 1975. Marginalia to a theorem of Silver. In \(\models \)ISILC Logic Conference (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974), pp. 115–142. Lecture Notes in Math., Vol. 499. Berlin: Springer.

    Google Scholar 

  12. Džamonja, Mirna. 2015. The singular world of singular cardinals. In Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, ed. by Åsa Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, pp. 139–146, Boston. De Gryter.

    Google Scholar 

  13. Džamonja, Mirna. 2016. Universal infinite clique-omitting graphs. Sarajevo Journal of Mathematics, 12 (25): 151–154.

    Google Scholar 

  14. Džamonja, Mirna, and Saharon Shelah. 2003. Universal graphs at the successor of a singular cardinal. Journal of Symbolic Logic 68: 366–387.

    Article  Google Scholar 

  15. Džamonja, Mirna, and Saharon Shelah. 2004. On the existence of universal models. Archive for Mathematical Logic 43 (7): 901–936.

    Article  Google Scholar 

  16. Easton, William B. 1970. Powers of regular cardinals. Annals of Mathematical Logic 1: 139–178.

    Article  Google Scholar 

  17. Galvin, Fred, and András Hajnal. 1975. Inequalities for cardinal powers. Annals of Mathematics 2 (101): 491–498.

    Article  Google Scholar 

  18. Gitik, Moti. 1980. All uncountable cardinals can be singular. Israel Journal of Mathematics 35 (1–2): 61–88.

    Article  Google Scholar 

  19. Gödel, Kurt. 1931. Über formal unentscheidbare Säztze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38: 173–198.

    Article  Google Scholar 

  20. Gödel, Kurt. 1997. The Consistency of the Continuum-Hypothesis. Princeton: Princeton University Press.

    Google Scholar 

  21. Hechler, Stephen H. 1973. Powers of singular cardinals and a strong form of the negation of the generalized continuum hypothesis. Z. Math. Logik Grundlagen Math. 19: 83–84.

    Article  Google Scholar 

  22. Heck, Richard G. 2011. Frege’s Theorem. Oxford: Clarendon Press.

    Google Scholar 

  23. Hell, Pavol, and Jaroslav Nešetřil. 2004. Graphs and homomorphisms, vol. 28., Oxford Lecture Series in Mathematics and its Applications Oxford: Oxford University Press.

    Google Scholar 

  24. Hilbert, David, and Paul Bernays. 1934–1939. Grundlagen der Mathematik, vol. 2. Berlin, Heidelberg, New York: Springer. Second edition: 1968–1970.

    Google Scholar 

  25. Heylen, Jan. 2014. The epistemic significance of numerals Synthese, Published online on September 6th. https://doi.org/10.1007/s11229-014-0542-y.

  26. Jané, Ignacio. Higher-order logic reconsidered. In [37], pp. 781–808.

    Google Scholar 

  27. Jech, Thomas. 2003. Set Theory, 3rd millenium edn. Berlin Heidelberg: Springer.

    Google Scholar 

  28. Kojman, Menachem. 2011. Singular Cardinals: from Hausdorff’s gaps to Shelah’s pcf theory. In Sets and Extensions in the Twentieth Century ed. by Dov M. Gabbay, Akihiro Kanamori, and John Woods, vol. 6 of Handbook of the History of Logic, pp. 509–558. Elsevier.

    Google Scholar 

  29. Kripke, Saul. 1992. Whitehead Lectures. Umpupished transcription of Kripke’s lectures delivered at Harvard University on May 5th-6th.

    Google Scholar 

  30. Kojman, Menachem, and Saharon Shelah. 1992. Nonexistence of universal orders in many cardinals. Journal of Symbolic Logic 57 (3): 875–891.

    Article  Google Scholar 

  31. Magidor, Menachem. 1977. On the singular cardinals problem. I. Israel Journal of Mathematics 28 (1–2): 1–31.

    Article  Google Scholar 

  32. Mekler, A. 1990. Universal structures in power \(\aleph _1\). Journal of Symbolic Logic 55 (2): 466–477.

    Article  Google Scholar 

  33. Rado, Richard. 1964. Universal graphs and universal functions. Acta Arithmetica 9: 331–340.

    Article  Google Scholar 

  34. Salanskis, Jean-Michel. 1991. L’heméneutique formelle. Paris: Éditions du CNRS.

    Google Scholar 

  35. Salanskis, Jean-Michel. 2008. Philosphie des mathématiques. Paris: Vrin.

    Google Scholar 

  36. Scott, Dana. 1961. Measurable cardinals and constructible sets. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9: 521–524.

    Google Scholar 

  37. Shapiro, Stewart. 2005. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford, New York: Oxford University Press.

    Google Scholar 

  38. Shapiro, Stewart. 2017. Computing with numbers and other non-syntactic things: De re knowledge of abstract. Philosophia Mathematica, ser. III, 25 (2): 268–281.

    Google Scholar 

  39. Steiner, Mark. 2011. Kripke on logicism, Wittgenstein, and de re beliefs about numbers. In Saul Kripke, ed. Alan Berger, 160–176. New York: Cambridge University Press.

    Chapter  Google Scholar 

  40. Shelah, Saharon. 1975. A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals. Israel Journal of Mathematics 21 (4): 319–349.

    Article  Google Scholar 

  41. Shelah, Saharon. 1984. On universal graphs without instances of CH. Annals of Pure and Applied Logic 26 (1): 75–87.

    Article  Google Scholar 

  42. Shelah, Saharon. 1990. Universal graphs without instances of CH: revisited. Israel Journal of Mathematics 70 (1): 69–81.

    Article  Google Scholar 

  43. Shelah, Saharon. 1994. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. New York: The Clarendon Press Oxford University Press. Oxford Science Publications.

    Google Scholar 

  44. Silver, Jack. 1975. On the singular cardinals problem. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pp. 265–268. Canad. Math. Congress, Montreal, Que.

    Google Scholar 

  45. Solovay, Robert M. 1965. \(2^{\aleph_0}\) can be anything it ought to be. In The theory of models. Proceedings of the 1963 International Symposium at Berkeley, ed. by J. W. Addison, Leon Henkin, and Alfred Tarski, pp. 435, Amsterdam, North-Holland Publishing Co.

    Google Scholar 

  46. Solovay, Robert M. 1974. Strongly compact cardinals and the GCH. In Proceedings of the Tarski Symposium, Proceedings of Symposia in Pure Mathematics, ed. by Leon Henkin, John Addison, William Craig, Dana Scott, and Robert Vaught, Vol. XXV, pp. 365–372. Published for the Association for Symbolic Logic by the American Mathematical Society, Providence, R. I.

    Google Scholar 

  47. Walsh, S. 2012. Comparing Peano arithmetic, Basic Law V, and Hume’s Principle. Annals of Pure and Applied Logic 163: 1679–1709.

    Article  Google Scholar 

  48. Walsh, S., and S. Ebels-Duggan. 2015. Relative categoricity and abstraction principles. The Review of Symbolic Logic 8 (3): 572–606.

    Article  Google Scholar 

  49. Wright, Crispin. 1983. Frege’s conception of numbers as objects. Aberdeen: Aberdeen University Press.

    Google Scholar 

  50. Zermelo, Ernst. 1930. Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae 16: 29–47.

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the help of EPSRC through the grant EP/I00498, Leverhulme Trust through research Fellowship 2014–2015 and l’Institut d’Histoire et de Philosophie des Sciences et des Techniques, Université Paris 1, where she is an Associate Member. The second acknowledges the support of ANR through the project ObMathRe. The authors are grateful to Walter Carnielli for his instructive comments on a preliminary version of the manuscript, and to Marianna Antonutti-Marfori, Drew Moshier and Rachael Schiel for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Džamonja, M., Panza, M. (2018). Asymptotic Quasi-completeness and ZFC. In: Carnielli, W., Malinowski, J. (eds) Contradictions, from Consistency to Inconsistency. Trends in Logic, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-98797-2_8

Download citation

Publish with us

Policies and ethics