Genomic Applications in Head and Neck Cancers

  • Joseph A. Bellairs
  • Jessica Yesensky
  • Jamie Ahn Ku
  • Nishant AgrawalEmail author


Head and neck squamous cell carcinoma (HNSCC) represents a biologically complex disease process with a heterogeneous collection of tumors in which multiple genes and pathways are altered. With the advancements in molecular and genetic research techniques and bioinformatics, there has been an explosion of new discoveries regarding the molecular biology and genetic alterations underpinning the pathogenesis of HNSCC. In this chapter, we review the specific genetic alterations in HNSCC and their clinical implications and future applications. The most common mutations in head and neck cancer, including the TP53, FAT1, NOTCH1, EGFR, HRAS, PIK3CA, and CDKN2A/p16 genes, are discussed as well as human papillomavirus as the primary etiologic agent in oropharyngeal SCC. The main topics of discussions are focused around three clinical applications of cancer genomics in head and neck cancers—diagnostic, prognostic, and therapeutic applications.


Head and neck cancer HPV TP53 FAT1 NOTCH EGFR HRAS PIK3CA CDKN2A P16 


  1. 1.
    Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Huang SH, Xu W, Waldron J, et al. Refining American Joint Committee on Cancer/Union for International Cancer Control TNM Stage and Prognostic Groups for human papillomavirus–related oropharyngeal carcinomas. J Clin Oncol. 2015;33:836–45.CrossRefGoogle Scholar
  3. 3.
    Marur S, Forastiere AA. Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2008;83:489–501.CrossRefGoogle Scholar
  4. 4.
    Pelucchi C, Gallus S, Garavello W, Bosetti C, La Vecchia C. Alcohol and tobacco use, and cancer risk for upper aerodigestive tract and liver. Eur J Cancer Prev. 2008;17:340–4.CrossRefGoogle Scholar
  5. 5.
    Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst. 2007;99:777–89.CrossRefGoogle Scholar
  6. 6.
    Franceschi S, Talamini R, Barra S, Barón AE, Negri E, Bidoli E, Serraino D, Vecchia CL. Smoking and drinking in relation to cancers of the oral cavity, pharynx, larynx, and esophagus in Northern Italy. Cancer Res. 1990;50:6502–7.PubMedGoogle Scholar
  7. 7.
    Zheng T, Boyle P, Hu H, Duan J, Jiang P, Ma D, Shui L, Niu S, MacMahon B. Tobacco smoking, alcohol consumption, and risk of oral cancer: a case-control study in Beijing, People’s Republic of China. Cancer Causes Control. 1990;1:173–9.CrossRefGoogle Scholar
  8. 8.
    Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Stemhagen A, Fraumeni JF. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48:3282–7.PubMedGoogle Scholar
  9. 9.
    Talamini R, Favero A, Franceschi S, La Vecchia C, Levi F, Conti E. Cancer of the oral cavity and pharynx in nonsmokers who drink alcohol and in nondrinkers who smoke tobacco. J Natl Cancer Inst. 1998;90:1901–3.CrossRefGoogle Scholar
  10. 10.
    Wight AJ, Ogden GR. Possible mechanisms by which alcohol may influence the development of oral cancer—a review. Oral Oncol. 1998;34:441–7.CrossRefPubMedGoogle Scholar
  11. 11.
    WHO. Cancer. In: WHO. Accessed 6 Apr 2017.
  12. 12.
    Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659–724.CrossRefGoogle Scholar
  13. 13.
    Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol. 2001;14:767–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Arora A, Willhite CA, Liebler DC. Interactions of β-carotene and cigarette smoke in human bronchial epithelial cells. Carcinogenesis. 2001;22:1173–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91:1194–210.CrossRefGoogle Scholar
  16. 16.
    Miller JA. Recent studies on the metabolic activation of chemical carcinogens. Cancer Res. 1994;54:1879s–81s.PubMedGoogle Scholar
  17. 17.
    Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21:7435–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Feng J, Li L, Zhao Y-S, Tang S-Q, Yang H-B, Liu S-X. Interaction between CYP 2C19*3 polymorphism and smoking in relation to laryngeal carcinoma in the Chinese Han population. Genet Mol Res. 2011;10:3331–7.CrossRefPubMedGoogle Scholar
  19. 19.
    XIE S, LUO C, SHAN X, ZHAO S, HE J, CAI Z. CYP1A1 MspI polymorphism and the risk of oral squamous cell carcinoma: evidence from a meta-analysis. Mol Clin Oncol. 2016;4:660–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hashibe M, Brennan P, Chuang S, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009;18:541–50.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7:149–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsuda T, Yabushita H, Kanaly RA, Shibutani S, Yokoyama A. Increased DNA damage in ALDH2-deficient alcoholics. Chem Res Toxicol. 2006;19:1374–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Druesne-Pecollo N, Tehard B, Mallet Y, Gerber M, Norat T, Hercberg S, Latino-Martel P. Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol. 2009;10:173–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJF, Meijer CJLM. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.CrossRefPubMedGoogle Scholar
  25. 25.
    Gillison ML, Broutian T, Pickard RKL, Tong Z, Xiao W, Kahle L, Graubard BI, Chaturvedi AK. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA. 2012;307:693–703.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mork J, Lie AK, Glattre E, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med. 2001;344:1125–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cancer Facts & Figures 2016. American Cancer Society. Accessed 7 Apr 2017.
  29. 29.
    Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.CrossRefGoogle Scholar
  30. 30.
    Brennan JA, Boyle JO, Koch WM, Goodman SN, Hruban RH, Eby YJ, Couch MJ, Forastiere AA, Sidransky D. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. N Engl J Med. 1995;332:712–7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis – the p53 network. J Cell Sci. 2003;116:4077–85.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Muller PAJ, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.CrossRefGoogle Scholar
  35. 35.
    El-Naggar AK, Lai S, Luna MA, Zhou X-D, Weber RS, Goepfert H, Batsakis JG. Sequential p53 mutation analysis of pre-invasive and invasive head and neck squamous carcinoma. Int J Cancer. 1995;64:196–201.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ogmundsdóttir HM, Hilmarsdóttir H, Astvaldsdóttir A, Jóhannsson JH, Holbrook WP. Oral lichen planus has a high rate of TP53 mutations. A study of oral mucosa in icelanD. Eur J Oral Sci. 2002;110:192–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, Correo R, Eby YJ, Ruppert JM, Sidransky D. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993;53:4477–80.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Field JK, Zoumpourlis V, Spandidos DA, Jones AS (1994) p53 expression and mutations in squamous cell carcinoma of the head and neck: expression correlates with the patients’ use of tobacco and alcohol. Cancer Detect Prev 18:197–208.Google Scholar
  39. 39.
    Hsieh L-L, Wang P-F, Chen I-H, Liao C-T, Wang H-M, Chen M-C, Chang JT-C, Cheng A-J. Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis. 2001;22:1497–503.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tanoue T, Takeichi M. New insights into Fat cadherins. J Cell Sci. 2005;118:2347–53.CrossRefGoogle Scholar
  41. 41.
    Tanoue T, Takeichi M. Mammalian Fat1 cadherin regulates actin dynamics and cell–cell contact. J Cell Biol. 2004;165:517–28.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bryant PJ, Huettner B, Held LI, Ryerse J, Szidonya J. Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev Biol. 1988;129:541–54.CrossRefGoogle Scholar
  43. 43.
    Mahoney PA, Weber U, Onofrechuk P, Biessmann H, Bryant PJ, Goodman CS. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell. 1991;67:853–68.CrossRefGoogle Scholar
  44. 44.
    Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development. 2011;138:947–57.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Saburi S, Hester I, Goodrich L, McNeill H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development. 2012;139:1806–20.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ishiuchi T, Misaki K, Yonemura S, Takeichi M, Tanoue T. Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J Cell Biol. 2009;185:959–67.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Morris LGT, Kaufman AM, Gong Y, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45:253–61.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–42.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199–221.PubMedGoogle Scholar
  51. 51.
    Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.CrossRefGoogle Scholar
  52. 52.
    Kim KT, Kim B, Kim JH. Association between FAT1 mutation and overall survival in patients with human papillomavirus–negative head and neck squamous cell carcinoma. Head Neck. 2016;38:E2021–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bowles DW, Diamond JR, Lam ET, et al. Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin Cancer Res. 2014;20:1656–65.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Califano J, van der Riet P, Westra W, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56:2488–92.PubMedPubMedCentralGoogle Scholar
  55. 55.
    van der Riet P, Nawroz H, Hruban RH, Corio R, Tokino K, Koch W, Sidransky D. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res. 1994;54:1156–8.PubMedGoogle Scholar
  56. 56.
    Miracca EC, Kowalski LP, Nagai MA. High prevalence of p16 genetic alterations in head and neck tumours. Br J Cancer. 1999;81:677–83.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chen P-L, Scully P, Shew J-Y, Wang JYJ, Lee W-H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989;58:1193–8.CrossRefGoogle Scholar
  58. 58.
    Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375:503–6.CrossRefGoogle Scholar
  59. 59.
    Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui C, Clevers H, Dotto GP, Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33:416–21.CrossRefGoogle Scholar
  60. 60.
    Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J, Millar SE, Pear WS, Parmacek MS. Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res. 2006;66:7438–44.CrossRefGoogle Scholar
  61. 61.
    Egloff AM, Grandis JR. Molecular pathways: context-dependent approaches to Notch targeting as cancer therapy. Clin Cancer Res. 2012;18:5188–95.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.CrossRefGoogle Scholar
  63. 63.
    Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhang Z-P, Sun Y-L, Fu L, Gu F, Zhang L, Hao X-S. Correlation of Notch1 expression and activation to cisplatin-sensitivity of head and neck squamous cell carcinoma. Ai Zheng. 2009;28:100–3.PubMedGoogle Scholar
  65. 65.
    Lin J-T, Chen M-K, Yeh K-T, Chang C-S, Chang T-H, Lin C-Y, Wu Y-C, Su B-W, Lee K-D, Chang P-J. Association of high levels of Jagged-1 and Notch-1 expression with poor prognosis in head and neck cancer. Ann Surg Oncol. 2010;17:2976–83.CrossRefGoogle Scholar
  66. 66.
    Gu F, Ma Y, Zhang Z, Zhao J, Kobayashi H, Zhang L, Fu L. Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep. 2010;23:671–6.PubMedGoogle Scholar
  67. 67.
    Zhang T-H, Liu H-C, Zhu L-J, Chu M, Liang Y-J, Liang L-Z, Liao G-Q. Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med. 2011;40:37–45.CrossRefGoogle Scholar
  68. 68.
    Hijioka H, Setoguchi T, Miyawaki A, Gao H, Ishida T, Komiya S, Nakamura N. Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int J Oncol. 2010;36:817–22.PubMedGoogle Scholar
  69. 69.
    Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck Cancer. J Clin Oncol. 2006;24:2666–72.CrossRefGoogle Scholar
  70. 70.
    Klein JD, Grandis JR. The molecular pathogenesis of head and neck cancer. Cancer Biol Ther. 2010;9:1.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rodrigo JP, Ramos S, Lazo PS, Alvarez I, Suárez C (1996) Amplification of ERBB oncogenes in squamous cell carcinomas of the head and neck. Eur J Cancer 1990 32A:2004–2010.Google Scholar
  72. 72.
    Ibrahim SO, Vasstrand EN, Liavaag PG, Johannessen AC, Lillehaug JR. Expression of c-erbB proto-oncogene family members in squamous cell carcinoma of the head and neck. Anticancer Res. 1997;17:4539–46.PubMedGoogle Scholar
  73. 73.
    Sok JC, Coppelli FM, Thomas SM, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12:5064–73.CrossRefGoogle Scholar
  74. 74.
    Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129:1287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rogers SJ, Harrington KJ, Rhys-Evans P, O-Charoenrat P, Eccles SA. Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer Metastasis Rev. 2005;24:47–69.CrossRefGoogle Scholar
  76. 76.
    Leslie NR, Downes CP. PTEN function: how normal cells control it and tumour cells lose it. Biochem J. 2004;382:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pedrero JMG, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS, Gonzalez MV. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer. 2005;114:242–8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sano D, Oridate N. The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma. Int J Clin Oncol. 2016;21:819–26.CrossRefGoogle Scholar
  79. 79.
    Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78:11451–60.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Straight SW, Hinkle PM, Jewers RJ, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol. 1993;67:4521–32.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Faraji F, Zaidi M, Fakhry C, Gaykalova DA. Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect. 2017;19:464–75.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Venuti A, Paolini F. HPV detection methods in head and neck cancer. Head Neck Pathol. 2012;6:63–74.CrossRefPubMedCentralGoogle Scholar
  84. 84.
    Singhi AD, Westra WH. Comparison of human papillomavirus in situ hybridization and p16 immunohistochemistry in the detection of human papillomavirus-associated head and neck cancer based on a prospective clinical experience. Cancer. 2010;116:2166–73.PubMedGoogle Scholar
  85. 85.
    Huang CC, Qiu JT, Kashima ML, Kurman RJ, Wu TC. Generation of type-specific probes for the detection of single-copy human papillomavirus by a novel in situ hybridization method. Mod Pathol. 1998;11:971–7.PubMedGoogle Scholar
  86. 86.
    Capone RB, Pai SI, Koch WM, Gillison ML, Danish HN, Westra WH, Daniel R, Shah KV, Sidransky D. Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma. Clin Cancer Res. 2000;6:4171–5.PubMedGoogle Scholar
  87. 87.
    Chuang AY, Chuang TC, Chang S, Zhou S, Begum S, Westra WH, Ha PK, Koch WM, Califano JA. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral Oncol. 2008;44:915–9.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Conway C, Chalkley R, High A, et al. Next-generation sequencing for simultaneous determination of human papillomavirus load, subtype, and associated genomic copy number changes in tumors. J Mol Diagn. 2012;14:104–11.CrossRefPubMedGoogle Scholar
  89. 89.
    Barzon L, Militello V, Lavezzo E, et al. Human papillomavirus genotyping by 454 next generation sequencing technology. J Clin Virol. 2011;52:93–7.CrossRefGoogle Scholar
  90. 90.
    Wittekindt C, Gültekin E, Weissenborn SJ, Dienes HP, Pfister HJ, Klussmann JP. Expression of p16 protein is associated with human papillomavirus status in tonsillar carcinomas and has implications on survival. Adv Otorhinolaryngol. 2005;62:72–80.PubMedGoogle Scholar
  91. 91.
    Shi W, Kato H, Perez-Ordonez B, et al. Comparative prognostic value of HPV16 E6 mRNA compared with in situ hybridization for human oropharyngeal squamous carcinoma. J Clin Oncol. 2009;27:6213–21.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Begum S, Gillison ML, Nicol TL, Westra WH. Detection of human Papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:1186–91.CrossRefPubMedGoogle Scholar
  93. 93.
    Umudum H, Rezanko T, Dag F, Dogruluk T. Human papillomavirus genome detection by in situ hybridization in fine-needle aspirates of metastatic lesions from head and neck squamous cell carcinomas. Cancer Cytopathol. 2005;105:171–7.CrossRefGoogle Scholar
  94. 94.
    de Braud F, al-Sarraf M. Diagnosis and management of squamous cell carcinoma of unknown primary tumor site of the neck. Semin Oncol. 1993;20:273–8.PubMedGoogle Scholar
  95. 95.
    Day KE, Sweeny L, Kulbersh B, Zinn KR, Rosenthal EL. Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol. 2013;15:722–9.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL. Use of Panitumumab-IRDye800 to image microscopic head and neck Cancer in an Orthotopic surgical model. Ann Surg Oncol. 2012;19:3879–87.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    de Boer E, Warram JM, Tucker MD, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci Rep. 2015;5:10169. Scholar
  98. 98.
    Qi S, Miao Z, Liu H, Xu Y, Feng Y, Cheng Z. Evaluation of four Affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors. Bioconjug Chem. 2012;23:1149–56.CrossRefPubMedGoogle Scholar
  99. 99.
    Agnes RS, Broome A-M, Wang J, Verma A, Lavik K, Basilion JP. An optical probe for noninvasive molecular imaging of orthotopic brain tumors overexpressing epidermal growth factor receptor. Mol Cancer Ther. 2012;11:2202. Scholar
  100. 100.
    Chan LW, Wang Y-N, Lin LY, Upton MP, Hwang JH, Pun SH. Synthesis and characterization of anti-EGFR fluorescent nanoparticles for optical molecular imaging. Bioconjug Chem. 2013;24:167–75.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Oliveira S, van Dongen GAMS, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, van Diest PJ, van Bergen en Henegouwen PMP. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012;11:33–46.CrossRefPubMedGoogle Scholar
  102. 102.
    Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Ganly I, Kirn D, Eckhardt SG, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6:798–806.PubMedGoogle Scholar
  104. 104.
    Skinner HD, Sandulache VC, Ow TJ, Meyn RE, Yordy JS, Beadle BM, Fitzgerald AL, Giri U, Ang KK, Myers JN. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18:290–300.CrossRefPubMedGoogle Scholar
  105. 105.
    Koch WM, Brennan JA, Zahurak M, Goodman SN, Westra WH, Schwab D, Yoo GH, Lee DJ, Forastiere AA, Sidransky D. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst. 1996;88:1580–6.CrossRefPubMedGoogle Scholar
  106. 106.
    Alsner J, Sørensen SB, Overgaard J. TP53 mutation is related to poor prognosis after radiotherapy, but not surgery, in squamous cell carcinoma of the head and neck. Radiother Oncol. 2001;59:179–85.CrossRefPubMedGoogle Scholar
  107. 107.
    Temam S, Flahault A, Périé S, Monceaux G, Coulet F, Callard P, Bernaudin J-F, St Guily JL, Fouret P. p53 gene status as a predictor of tumor response to induction chemotherapy of patients with locoregionally advanced squamous cell carcinomas of the head and neck. J Clin Oncol. 2000;18:385.CrossRefPubMedGoogle Scholar
  108. 108.
    Cabelguenne A, Blons H, de Waziers I, Carnot F, Houllier A-M, Soussi T, Brasnu D, Beaune P, Laccourreye O, Laurent-Puig P. p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol. 2000;18:1465–73.CrossRefPubMedGoogle Scholar
  109. 109.
    Brennan JA, Mao L, Hruban RH, Boyle JO, Eby YJ, Koch WM, Goodman SN, Sidransky D. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med. 1995;332:429–35.CrossRefPubMedGoogle Scholar
  110. 110.
    van HVMM, Leemans CR, Kummer JA, Dijkstra J, Kuik DJ, van den BMWM, Snow GB, Brakenhoff RH. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients. Clin Cancer Res. 2004;10:3614–20.CrossRefGoogle Scholar
  111. 111.
    Pena Murillo C, Huang X, Hills A, et al. The utility of molecular diagnostics to predict recurrence of head and neck carcinoma. Br J Cancer. 2012;107:1138–43.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Lopez-Martinez M, Anzola M, Cuevas N, Aguirre JM, De-Pancorbo M. Clinical applications of the diagnosis of p53 alterations in squamous cell carcinoma of the head and neck. Med Oral. 2002;7:108–20.PubMedGoogle Scholar
  113. 113.
    Ragin CCR, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer. 2007;121:1813–20.CrossRefGoogle Scholar
  114. 114.
    Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, Forastiere A, Gillison ML. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.CrossRefGoogle Scholar
  115. 115.
    Sedaghat AR, Zhang Z, Begum S, et al. Prognostic significance of human papillomavirus in oropharyngeal squamous cell carcinomas. Laryngoscope. 2009;119:1542–9.CrossRefGoogle Scholar
  116. 116.
    Dayyani F, Etzel CJ, Liu M, Ho C-H, Lippman SM, Tsao AS. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC). Head Neck Oncol. 2010;2:15.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Geisler SA, Olshan AF, Cai J, Weissler M, Smith J, Bell D. Glutathione S-transferase polymorphisms and survival from head and neck cancer. Head Neck. 2005;27:232–42.CrossRefGoogle Scholar
  118. 118.
    Nishimura T, Newkirk K, Sessions RB, Andrews PA, Trock BJ, Rasmussen AA, Montgomery EA, Bischoff EK, Cullen KJ. Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin Cancer Res. 1996;2:1859–65.PubMedGoogle Scholar
  119. 119.
    Shiga H, Heath EI, Rasmussen AA, Trock B, Johnston PG, Forastiere AA, Langmacher M, Baylor A, Lee M, Cullen KJ. Prognostic value of p53, glutathione S-transferase π, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res. 1999;5:4097–104.PubMedGoogle Scholar
  120. 120.
    Schumaker L, Nikitakis N, Goloubeva O, Tan M, Taylor R, Cullen KJ. Elevated expression of glutathione S-transferase π and p53 confers poor prognosis in head and neck cancer patients treated with chemoradiotherapy but not radiotherapy alone. Clin Cancer Res. 2008;14:5877–83.CrossRefPubMedGoogle Scholar
  121. 121.
    Szanyi I, Ráth G, Móricz P, Somogyvári K, Révész P, Gerlinger I, Orsós Z, Ember I, Kiss I. Effects of cytochrome P450 1A1 and uridine-diphosphate-glucuronosyltransferase 1A1 allelic polymorphisms on the risk of development and the prognosis of head and neck cancers. Eur J Cancer. 2012;21:560–8.CrossRefGoogle Scholar
  122. 122.
    Sturgis EM, Ang KK. The epidemic of HPV-associated oropharyngeal cancer is here: is it time to change our treatment paradigms? J Natl Compr Cancer Netw. 2011;9:665–73.CrossRefGoogle Scholar
  123. 123.
    Marur S, Li S, Cmelak AJ, et al. E1308: phase II trial of induction chemotherapy followed by reduced-dose radiation and weekly cetuximab in patients with HPV-associated resectable squamous cell carcinoma of the oropharynx— ECOG-ACRIN Cancer Research Group. J Clin Oncol. 2016;35:490–7.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Moore EJ, Olsen KD, Kasperbauer JL. Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes. Laryngoscope. 2009;119:2156–64.CrossRefPubMedGoogle Scholar
  125. 125.
    Weinstein GS, Quon H, O’Malley BW, Kim GG, Cohen MA. Selective neck dissection and deintensified postoperative radiation and chemotherapy for oropharyngeal cancer: a subset analysis of the university of Pennsylvania transoral robotic surgery trial. Laryngoscope. 2010;120:1749–55.CrossRefPubMedGoogle Scholar
  126. 126.
    White HN, Moore EJ, Rosenthal EL, Carroll WR, Olsen KD, Desmond RA, Magnuson JS. Transoral robotic-assisted surgery for head and neck squamous cell carcinoma: one- and 2-year survival analysis. Arch Otolaryngol Head Neck Surg. 2010;136:1248–52.CrossRefPubMedGoogle Scholar
  127. 127.
    Cohen MA, Weinstein GS, O’Malley BW, Feldman M, Quon H. Transoral robotic surgery and human papillomavirus status: oncologic results. Head Neck. 2011;33:573–80.CrossRefPubMedGoogle Scholar
  128. 128.
    Moore EJ, Olsen SM, Laborde RR, García JJ, Walsh FJ, Price DL, Janus JR, Kasperbauer JL, Olsen KD. Long-term functional and oncologic results of Transoral robotic surgery for oropharyngeal squamous cell carcinoma. Mayo Clin Proc. 2012;87:219–25.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Schiller JT, Castellsagué X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012;30:F123–38.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Joura EA, Giuliano AR, Iversen O-E, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372:711–23.CrossRefGoogle Scholar
  131. 131.
    Joura EA, Garland SM, Paavonen J, Ferris DG, Perez G, Ault KA, Huh WK, Sings HL, James MK, Haupt RM. Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ. 2012;344:e1401. Scholar
  132. 132.
    FUTURE I/II Study Group, Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, Brown DR, Koutsky LA, Tay EH, García P, Ault KA, Garland SM, Leodolter S, Olsson SE, Tang GW, Ferris DG, Paavonen J, Lehtinen M, Steben M, Bosch FX, Joura EA, Majewski S, Muñoz N, Myers ER, Villa LL, Taddeo FJ, Roberts C, Tadesse A, Bryan JT, Maansson R, Lu S, Vuocolo S, Hesley TM, Barr E, Haupt R. Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ. 2010;341:c3493. Scholar
  133. 133.
    Yang A, Farmer E, Lin J, Wu T-C, Hung C-F. The current state of therapeutic and T cell-based vaccines against human papillomaviruses. Virus Res. 2017;231:148–65.CrossRefGoogle Scholar
  134. 134.
    Best SR, Niparko KJ, Pai SI. Biology of HPV infection and immune therapy for HPV-related head and neck cancers. Otolaryngol Clin N Am. 2012;45:807–22.CrossRefGoogle Scholar
  135. 135.
    Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S. Immune suppression in head and neck cancers: a review. Clin Dev Immunol. 2010;2010:1. Scholar
  136. 136.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.CrossRefGoogle Scholar
  137. 137.
    Mandal R, Şenbabaoğlu Y, Desrichard A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 1:e89829.
  138. 138.
    Ferris RL, Blumenschein GJ, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Cohen EE, Harrington KJ, Le Tourneau C, et al. LBA45_PRPembrolizumab (pembro) vs standard of care (SOC) for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC): Phase 3 KEYNOTE-040 trial. Ann Oncol. 2017;
  140. 140.
    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther. 1994;1:5–13.PubMedGoogle Scholar
  142. 142.
    Liu T-J, Zhang W-W, Taylor DL, Roth JA, Goepfert H, Clayman GL. Growth suppression of human head and neck Cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res. 1994;54:3662–7.PubMedGoogle Scholar
  143. 143.
    Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE, Ryan P, Chiang Y, Chang EH. p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene. 1997;14:1735–46.CrossRefGoogle Scholar
  144. 144.
    Nemunaitis J, Clayman G, Agarwala SS, et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res. 2009;15:7719–25.CrossRefGoogle Scholar
  145. 145.
    Nemunaitis J, Nemunaitis J. Head and neck cancer: response to p53-based therapeutics. Head Neck. 2011;33:131–4.CrossRefGoogle Scholar
  146. 146.
    Vermorken JB, Stöhlmacher-Williams J, Davidenko I, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013;14:697–710.CrossRefGoogle Scholar
  147. 147.
    Mesía R, Henke M, Fortin A, et al. Chemoradiotherapy with or without panitumumab in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-1): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015;16:208–20.CrossRefGoogle Scholar
  148. 148.
    Giralt J, Trigo J, Nuyts S, et al. Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015;16:221–32.CrossRefGoogle Scholar
  149. 149.
    Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–78.CrossRefGoogle Scholar
  150. 150.
    Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.CrossRefGoogle Scholar
  151. 151.
    Cohen RB. Current challenges and clinical investigations of epidermal growth factor receptor (EGFR)- and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat Rev. 2014;40:567–77.CrossRefGoogle Scholar
  152. 152.
    Martins RG, Parvathaneni U, Bauman JE, et al. Cisplatin and radiotherapy with or without erlotinib in locally advanced squamous cell carcinoma of the head and neck: a randomized phase II trial. J Clin Oncol. 2013;31:1415–21.CrossRefGoogle Scholar
  153. 153.
    Argiris A, Ghebremichael M, Gilbert J, Lee J-W, Sachidanandam K, Kolesar JM, Burtness B, Forastiere AA. Phase III randomized, placebo-controlled trial of docetaxel with or without Gefitinib in recurrent or metastatic head and neck Cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31:1405–14.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Harrington K, Temam S, Mehanna H, et al. Postoperative adjuvant Lapatinib and concurrent chemoradiotherapy followed by maintenance lapatinib monotherapy in high-risk patients with resected squamous cell carcinoma of the head and neck: a phase III, randomized, double-blind, placebo-controlled study. J Clin Oncol. 2015;33:4202–9.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Gregoire V, Hamoir M, Chen C, et al. Gefitinib plus cisplatin and radiotherapy in previously untreated head and neck squamous cell carcinoma: a phase II, randomized, double-blind, placebo-controlled study. Radiother Oncol. 2011;100:62–9.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Fortini ME. Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol. 2002;3:673–84.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Curry CL, Reed LL, Golde TE, Miele L, Nickoloff BJ, Foreman KE. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene. 2005;24:6333–44.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Huynh C, Poliseno L, Segura MF, et al. The novel gamma secretase inhibitor RO4929097 reduces the tumor initiating potential of melanoma. PLoS One. 2011;6:e25264. Scholar
  159. 159.
    Maraver A, Fernández-Marcos PJ, Herranz D, et al. Therapeutic effect of γ-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma through derepression of DUSP1 phosphatase and inhibition of ERK. Cancer Cell. 2012;22:222. Scholar
  160. 160.
    Portanova P, Notaro A, Pellerito O, Sabella S, Giuliano M, Calvaruso G. Notch inhibition restores TRAIL-mediated apoptosis via AP1-dependent upregulation of DR4 and DR5 TRAIL receptors in MDA-MB-231 breast cancer cells. Int J Oncol. 2013;43:121–30.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Yabuuchi S, Pai SG, Campbell NR, et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013;335:41–51.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Tolcher AW, Messersmith WA, Mikulski SM, et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol. 2012;30:2348–53.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Richter S, Bedard PL, Chen EX, et al. A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575). Investig New Drugs. 2014;32:243–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Joseph A. Bellairs
    • 1
  • Jessica Yesensky
    • 2
  • Jamie Ahn Ku
    • 3
  • Nishant Agrawal
    • 2
    Email author
  1. 1.Department of Otolaryngology – Head and Neck SurgeryUniversity of Washington Affiliated HospitalsSeattleUSA
  2. 2.Department of Surgery, Section of Otolaryngology – Head and Neck SurgeryUniversity of Chicago MedicineChicagoUSA
  3. 3.Head and Neck Institute, Head and Neck Surgery and OncologyCleveland Clinic Foundation and Lerner College of Medicine at Case Western Reserve UniversityClevelandUSA

Personalised recommendations