Skip to main content

Genomic Applications in Head and Neck Cancers

  • Chapter
  • First Online:
Genomic Applications in Pathology

Abstract

Head and neck squamous cell carcinoma (HNSCC) represents a biologically complex disease process with a heterogeneous collection of tumors in which multiple genes and pathways are altered. With the advancements in molecular and genetic research techniques and bioinformatics, there has been an explosion of new discoveries regarding the molecular biology and genetic alterations underpinning the pathogenesis of HNSCC. In this chapter, we review the specific genetic alterations in HNSCC and their clinical implications and future applications. The most common mutations in head and neck cancer, including the TP53, FAT1, NOTCH1, EGFR, HRAS, PIK3CA, and CDKN2A/p16 genes, are discussed as well as human papillomavirus as the primary etiologic agent in oropharyngeal SCC. The main topics of discussions are focused around three clinical applications of cancer genomics in head and neck cancers—diagnostic, prognostic, and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang SH, Xu W, Waldron J, et al. Refining American Joint Committee on Cancer/Union for International Cancer Control TNM Stage and Prognostic Groups for human papillomavirus–related oropharyngeal carcinomas. J Clin Oncol. 2015;33:836–45.

    Article  PubMed  Google Scholar 

  3. Marur S, Forastiere AA. Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2008;83:489–501.

    Article  PubMed  Google Scholar 

  4. Pelucchi C, Gallus S, Garavello W, Bosetti C, La Vecchia C. Alcohol and tobacco use, and cancer risk for upper aerodigestive tract and liver. Eur J Cancer Prev. 2008;17:340–4.

    Article  PubMed  Google Scholar 

  5. Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst. 2007;99:777–89.

    Article  PubMed  Google Scholar 

  6. Franceschi S, Talamini R, Barra S, Barón AE, Negri E, Bidoli E, Serraino D, Vecchia CL. Smoking and drinking in relation to cancers of the oral cavity, pharynx, larynx, and esophagus in Northern Italy. Cancer Res. 1990;50:6502–7.

    CAS  PubMed  Google Scholar 

  7. Zheng T, Boyle P, Hu H, Duan J, Jiang P, Ma D, Shui L, Niu S, MacMahon B. Tobacco smoking, alcohol consumption, and risk of oral cancer: a case-control study in Beijing, People’s Republic of China. Cancer Causes Control. 1990;1:173–9.

    Article  CAS  PubMed  Google Scholar 

  8. Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Stemhagen A, Fraumeni JF. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48:3282–7.

    CAS  PubMed  Google Scholar 

  9. Talamini R, Favero A, Franceschi S, La Vecchia C, Levi F, Conti E. Cancer of the oral cavity and pharynx in nonsmokers who drink alcohol and in nondrinkers who smoke tobacco. J Natl Cancer Inst. 1998;90:1901–3.

    Article  CAS  PubMed  Google Scholar 

  10. Wight AJ, Ogden GR. Possible mechanisms by which alcohol may influence the development of oral cancer—a review. Oral Oncol. 1998;34:441–7.

    Article  CAS  PubMed  Google Scholar 

  11. WHO. Cancer. In: WHO. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 6 Apr 2017.

  12. Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659–724.

    Article  Google Scholar 

  13. Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol. 2001;14:767–90.

    Article  CAS  PubMed  Google Scholar 

  14. Arora A, Willhite CA, Liebler DC. Interactions of β-carotene and cigarette smoke in human bronchial epithelial cells. Carcinogenesis. 2001;22:1173–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91:1194–210.

    Article  CAS  PubMed  Google Scholar 

  16. Miller JA. Recent studies on the metabolic activation of chemical carcinogens. Cancer Res. 1994;54:1879s–81s.

    CAS  PubMed  Google Scholar 

  17. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21:7435–51.

    Article  CAS  PubMed  Google Scholar 

  18. Feng J, Li L, Zhao Y-S, Tang S-Q, Yang H-B, Liu S-X. Interaction between CYP 2C19*3 polymorphism and smoking in relation to laryngeal carcinoma in the Chinese Han population. Genet Mol Res. 2011;10:3331–7.

    Article  CAS  PubMed  Google Scholar 

  19. XIE S, LUO C, SHAN X, ZHAO S, HE J, CAI Z. CYP1A1 MspI polymorphism and the risk of oral squamous cell carcinoma: evidence from a meta-analysis. Mol Clin Oncol. 2016;4:660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hashibe M, Brennan P, Chuang S, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009;18:541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7:149–56.

    Article  CAS  PubMed  Google Scholar 

  22. Matsuda T, Yabushita H, Kanaly RA, Shibutani S, Yokoyama A. Increased DNA damage in ALDH2-deficient alcoholics. Chem Res Toxicol. 2006;19:1374–8.

    Article  CAS  PubMed  Google Scholar 

  23. Druesne-Pecollo N, Tehard B, Mallet Y, Gerber M, Norat T, Hercberg S, Latino-Martel P. Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol. 2009;10:173–80.

    Article  CAS  PubMed  Google Scholar 

  24. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJF, Meijer CJLM. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.

    Article  PubMed  Google Scholar 

  25. Gillison ML, Broutian T, Pickard RKL, Tong Z, Xiao W, Kahle L, Graubard BI, Chaturvedi AK. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA. 2012;307:693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mork J, Lie AK, Glattre E, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med. 2001;344:1125–31.

    Article  CAS  PubMed  Google Scholar 

  27. Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cancer Facts & Figures 2016. American Cancer Society. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html. Accessed 7 Apr 2017.

  29. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  CAS  Google Scholar 

  30. Brennan JA, Boyle JO, Koch WM, Goodman SN, Hruban RH, Eby YJ, Couch MJ, Forastiere AA, Sidransky D. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. N Engl J Med. 1995;332:712–7.

    Article  CAS  PubMed  Google Scholar 

  31. Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis – the p53 network. J Cell Sci. 2003;116:4077–85.

    Article  CAS  PubMed  Google Scholar 

  34. Muller PAJ, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.

    Article  CAS  PubMed  Google Scholar 

  35. El-Naggar AK, Lai S, Luna MA, Zhou X-D, Weber RS, Goepfert H, Batsakis JG. Sequential p53 mutation analysis of pre-invasive and invasive head and neck squamous carcinoma. Int J Cancer. 1995;64:196–201.

    Article  CAS  PubMed  Google Scholar 

  36. Ogmundsdóttir HM, Hilmarsdóttir H, Astvaldsdóttir A, Jóhannsson JH, Holbrook WP. Oral lichen planus has a high rate of TP53 mutations. A study of oral mucosa in icelanD. Eur J Oral Sci. 2002;110:192–8.

    Article  PubMed  Google Scholar 

  37. Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, Correo R, Eby YJ, Ruppert JM, Sidransky D. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993;53:4477–80.

    CAS  PubMed  Google Scholar 

  38. Field JK, Zoumpourlis V, Spandidos DA, Jones AS (1994) p53 expression and mutations in squamous cell carcinoma of the head and neck: expression correlates with the patients’ use of tobacco and alcohol. Cancer Detect Prev 18:197–208.

    Google Scholar 

  39. Hsieh L-L, Wang P-F, Chen I-H, Liao C-T, Wang H-M, Chen M-C, Chang JT-C, Cheng A-J. Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis. 2001;22:1497–503.

    Article  CAS  PubMed  Google Scholar 

  40. Tanoue T, Takeichi M. New insights into Fat cadherins. J Cell Sci. 2005;118:2347–53.

    Article  CAS  PubMed  Google Scholar 

  41. Tanoue T, Takeichi M. Mammalian Fat1 cadherin regulates actin dynamics and cell–cell contact. J Cell Biol. 2004;165:517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bryant PJ, Huettner B, Held LI, Ryerse J, Szidonya J. Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev Biol. 1988;129:541–54.

    Article  CAS  PubMed  Google Scholar 

  43. Mahoney PA, Weber U, Onofrechuk P, Biessmann H, Bryant PJ, Goodman CS. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell. 1991;67:853–68.

    Article  CAS  PubMed  Google Scholar 

  44. Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development. 2011;138:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saburi S, Hester I, Goodrich L, McNeill H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development. 2012;139:1806–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishiuchi T, Misaki K, Yonemura S, Takeichi M, Tanoue T. Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J Cell Biol. 2009;185:959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morris LGT, Kaufman AM, Gong Y, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–42.

    Article  CAS  PubMed  Google Scholar 

  49. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  50. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199–221.

    CAS  PubMed  Google Scholar 

  51. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  CAS  PubMed  Google Scholar 

  52. Kim KT, Kim B, Kim JH. Association between FAT1 mutation and overall survival in patients with human papillomavirus–negative head and neck squamous cell carcinoma. Head Neck. 2016;38:E2021–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bowles DW, Diamond JR, Lam ET, et al. Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin Cancer Res. 2014;20:1656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Califano J, van der Riet P, Westra W, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56:2488–92.

    CAS  PubMed  Google Scholar 

  55. van der Riet P, Nawroz H, Hruban RH, Corio R, Tokino K, Koch W, Sidransky D. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res. 1994;54:1156–8.

    PubMed  Google Scholar 

  56. Miracca EC, Kowalski LP, Nagai MA. High prevalence of p16 genetic alterations in head and neck tumours. Br J Cancer. 1999;81:677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen P-L, Scully P, Shew J-Y, Wang JYJ, Lee W-H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989;58:1193–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375:503–6.

    Article  CAS  PubMed  Google Scholar 

  59. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui C, Clevers H, Dotto GP, Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33:416–21.

    Article  CAS  PubMed  Google Scholar 

  60. Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J, Millar SE, Pear WS, Parmacek MS. Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res. 2006;66:7438–44.

    Article  CAS  PubMed  Google Scholar 

  61. Egloff AM, Grandis JR. Molecular pathways: context-dependent approaches to Notch targeting as cancer therapy. Clin Cancer Res. 2012;18:5188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    Article  CAS  PubMed  Google Scholar 

  63. Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Z-P, Sun Y-L, Fu L, Gu F, Zhang L, Hao X-S. Correlation of Notch1 expression and activation to cisplatin-sensitivity of head and neck squamous cell carcinoma. Ai Zheng. 2009;28:100–3.

    CAS  PubMed  Google Scholar 

  65. Lin J-T, Chen M-K, Yeh K-T, Chang C-S, Chang T-H, Lin C-Y, Wu Y-C, Su B-W, Lee K-D, Chang P-J. Association of high levels of Jagged-1 and Notch-1 expression with poor prognosis in head and neck cancer. Ann Surg Oncol. 2010;17:2976–83.

    Article  PubMed  Google Scholar 

  66. Gu F, Ma Y, Zhang Z, Zhao J, Kobayashi H, Zhang L, Fu L. Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep. 2010;23:671–6.

    CAS  PubMed  Google Scholar 

  67. Zhang T-H, Liu H-C, Zhu L-J, Chu M, Liang Y-J, Liang L-Z, Liao G-Q. Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med. 2011;40:37–45.

    Article  CAS  PubMed  Google Scholar 

  68. Hijioka H, Setoguchi T, Miyawaki A, Gao H, Ishida T, Komiya S, Nakamura N. Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int J Oncol. 2010;36:817–22.

    CAS  PubMed  Google Scholar 

  69. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck Cancer. J Clin Oncol. 2006;24:2666–72.

    Article  CAS  PubMed  Google Scholar 

  70. Klein JD, Grandis JR. The molecular pathogenesis of head and neck cancer. Cancer Biol Ther. 2010;9:1.

    Article  CAS  PubMed  Google Scholar 

  71. Rodrigo JP, Ramos S, Lazo PS, Alvarez I, Suárez C (1996) Amplification of ERBB oncogenes in squamous cell carcinomas of the head and neck. Eur J Cancer 1990 32A:2004–2010.

    Google Scholar 

  72. Ibrahim SO, Vasstrand EN, Liavaag PG, Johannessen AC, Lillehaug JR. Expression of c-erbB proto-oncogene family members in squamous cell carcinoma of the head and neck. Anticancer Res. 1997;17:4539–46.

    CAS  PubMed  Google Scholar 

  73. Sok JC, Coppelli FM, Thomas SM, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12:5064–73.

    Article  CAS  PubMed  Google Scholar 

  74. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129:1287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rogers SJ, Harrington KJ, Rhys-Evans P, O-Charoenrat P, Eccles SA. Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer Metastasis Rev. 2005;24:47–69.

    Article  CAS  PubMed  Google Scholar 

  76. Leslie NR, Downes CP. PTEN function: how normal cells control it and tumour cells lose it. Biochem J. 2004;382:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pedrero JMG, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS, Gonzalez MV. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer. 2005;114:242–8.

    Article  CAS  PubMed  Google Scholar 

  78. Sano D, Oridate N. The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma. Int J Clin Oncol. 2016;21:819–26.

    Article  CAS  PubMed  Google Scholar 

  79. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    Article  CAS  PubMed  Google Scholar 

  80. Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78:11451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Straight SW, Hinkle PM, Jewers RJ, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol. 1993;67:4521–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Faraji F, Zaidi M, Fakhry C, Gaykalova DA. Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect. 2017;19:464–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Venuti A, Paolini F. HPV detection methods in head and neck cancer. Head Neck Pathol. 2012;6:63–74.

    Article  PubMed Central  Google Scholar 

  84. Singhi AD, Westra WH. Comparison of human papillomavirus in situ hybridization and p16 immunohistochemistry in the detection of human papillomavirus-associated head and neck cancer based on a prospective clinical experience. Cancer. 2010;116:2166–73.

    PubMed  Google Scholar 

  85. Huang CC, Qiu JT, Kashima ML, Kurman RJ, Wu TC. Generation of type-specific probes for the detection of single-copy human papillomavirus by a novel in situ hybridization method. Mod Pathol. 1998;11:971–7.

    CAS  PubMed  Google Scholar 

  86. Capone RB, Pai SI, Koch WM, Gillison ML, Danish HN, Westra WH, Daniel R, Shah KV, Sidransky D. Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma. Clin Cancer Res. 2000;6:4171–5.

    CAS  PubMed  Google Scholar 

  87. Chuang AY, Chuang TC, Chang S, Zhou S, Begum S, Westra WH, Ha PK, Koch WM, Califano JA. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral Oncol. 2008;44:915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Conway C, Chalkley R, High A, et al. Next-generation sequencing for simultaneous determination of human papillomavirus load, subtype, and associated genomic copy number changes in tumors. J Mol Diagn. 2012;14:104–11.

    Article  CAS  PubMed  Google Scholar 

  89. Barzon L, Militello V, Lavezzo E, et al. Human papillomavirus genotyping by 454 next generation sequencing technology. J Clin Virol. 2011;52:93–7.

    Article  CAS  PubMed  Google Scholar 

  90. Wittekindt C, Gültekin E, Weissenborn SJ, Dienes HP, Pfister HJ, Klussmann JP. Expression of p16 protein is associated with human papillomavirus status in tonsillar carcinomas and has implications on survival. Adv Otorhinolaryngol. 2005;62:72–80.

    CAS  PubMed  Google Scholar 

  91. Shi W, Kato H, Perez-Ordonez B, et al. Comparative prognostic value of HPV16 E6 mRNA compared with in situ hybridization for human oropharyngeal squamous carcinoma. J Clin Oncol. 2009;27:6213–21.

    Article  PubMed  Google Scholar 

  92. Begum S, Gillison ML, Nicol TL, Westra WH. Detection of human Papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:1186–91.

    Article  CAS  PubMed  Google Scholar 

  93. Umudum H, Rezanko T, Dag F, Dogruluk T. Human papillomavirus genome detection by in situ hybridization in fine-needle aspirates of metastatic lesions from head and neck squamous cell carcinomas. Cancer Cytopathol. 2005;105:171–7.

    Article  Google Scholar 

  94. de Braud F, al-Sarraf M. Diagnosis and management of squamous cell carcinoma of unknown primary tumor site of the neck. Semin Oncol. 1993;20:273–8.

    PubMed  Google Scholar 

  95. Day KE, Sweeny L, Kulbersh B, Zinn KR, Rosenthal EL. Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol. 2013;15:722–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL. Use of Panitumumab-IRDye800 to image microscopic head and neck Cancer in an Orthotopic surgical model. Ann Surg Oncol. 2012;19:3879–87.

    Article  PubMed  PubMed Central  Google Scholar 

  97. de Boer E, Warram JM, Tucker MD, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci Rep. 2015;5:10169. https://doi.org/10.1038/srep10169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qi S, Miao Z, Liu H, Xu Y, Feng Y, Cheng Z. Evaluation of four Affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors. Bioconjug Chem. 2012;23:1149–56.

    Article  CAS  PubMed  Google Scholar 

  99. Agnes RS, Broome A-M, Wang J, Verma A, Lavik K, Basilion JP. An optical probe for noninvasive molecular imaging of orthotopic brain tumors overexpressing epidermal growth factor receptor. Mol Cancer Ther. 2012;11:2202. https://doi.org/10.1158/1535-7163.MCT-12-0211.

    Article  CAS  PubMed  Google Scholar 

  100. Chan LW, Wang Y-N, Lin LY, Upton MP, Hwang JH, Pun SH. Synthesis and characterization of anti-EGFR fluorescent nanoparticles for optical molecular imaging. Bioconjug Chem. 2013;24:167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oliveira S, van Dongen GAMS, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, van Diest PJ, van Bergen en Henegouwen PMP. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012;11:33–46.

    Article  CAS  PubMed  Google Scholar 

  102. Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ganly I, Kirn D, Eckhardt SG, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6:798–806.

    CAS  PubMed  Google Scholar 

  104. Skinner HD, Sandulache VC, Ow TJ, Meyn RE, Yordy JS, Beadle BM, Fitzgerald AL, Giri U, Ang KK, Myers JN. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18:290–300.

    Article  CAS  PubMed  Google Scholar 

  105. Koch WM, Brennan JA, Zahurak M, Goodman SN, Westra WH, Schwab D, Yoo GH, Lee DJ, Forastiere AA, Sidransky D. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst. 1996;88:1580–6.

    Article  CAS  PubMed  Google Scholar 

  106. Alsner J, Sørensen SB, Overgaard J. TP53 mutation is related to poor prognosis after radiotherapy, but not surgery, in squamous cell carcinoma of the head and neck. Radiother Oncol. 2001;59:179–85.

    Article  CAS  PubMed  Google Scholar 

  107. Temam S, Flahault A, Périé S, Monceaux G, Coulet F, Callard P, Bernaudin J-F, St Guily JL, Fouret P. p53 gene status as a predictor of tumor response to induction chemotherapy of patients with locoregionally advanced squamous cell carcinomas of the head and neck. J Clin Oncol. 2000;18:385.

    Article  CAS  PubMed  Google Scholar 

  108. Cabelguenne A, Blons H, de Waziers I, Carnot F, Houllier A-M, Soussi T, Brasnu D, Beaune P, Laccourreye O, Laurent-Puig P. p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol. 2000;18:1465–73.

    Article  CAS  PubMed  Google Scholar 

  109. Brennan JA, Mao L, Hruban RH, Boyle JO, Eby YJ, Koch WM, Goodman SN, Sidransky D. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med. 1995;332:429–35.

    Article  CAS  PubMed  Google Scholar 

  110. van HVMM, Leemans CR, Kummer JA, Dijkstra J, Kuik DJ, van den BMWM, Snow GB, Brakenhoff RH. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients. Clin Cancer Res. 2004;10:3614–20.

    Article  Google Scholar 

  111. Pena Murillo C, Huang X, Hills A, et al. The utility of molecular diagnostics to predict recurrence of head and neck carcinoma. Br J Cancer. 2012;107:1138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lopez-Martinez M, Anzola M, Cuevas N, Aguirre JM, De-Pancorbo M. Clinical applications of the diagnosis of p53 alterations in squamous cell carcinoma of the head and neck. Med Oral. 2002;7:108–20.

    CAS  PubMed  Google Scholar 

  113. Ragin CCR, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer. 2007;121:1813–20.

    Article  CAS  PubMed  Google Scholar 

  114. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, Forastiere A, Gillison ML. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.

    Article  CAS  PubMed  Google Scholar 

  115. Sedaghat AR, Zhang Z, Begum S, et al. Prognostic significance of human papillomavirus in oropharyngeal squamous cell carcinomas. Laryngoscope. 2009;119:1542–9.

    Article  PubMed  Google Scholar 

  116. Dayyani F, Etzel CJ, Liu M, Ho C-H, Lippman SM, Tsao AS. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC). Head Neck Oncol. 2010;2:15.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Geisler SA, Olshan AF, Cai J, Weissler M, Smith J, Bell D. Glutathione S-transferase polymorphisms and survival from head and neck cancer. Head Neck. 2005;27:232–42.

    Article  PubMed  Google Scholar 

  118. Nishimura T, Newkirk K, Sessions RB, Andrews PA, Trock BJ, Rasmussen AA, Montgomery EA, Bischoff EK, Cullen KJ. Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin Cancer Res. 1996;2:1859–65.

    CAS  PubMed  Google Scholar 

  119. Shiga H, Heath EI, Rasmussen AA, Trock B, Johnston PG, Forastiere AA, Langmacher M, Baylor A, Lee M, Cullen KJ. Prognostic value of p53, glutathione S-transferase π, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res. 1999;5:4097–104.

    CAS  PubMed  Google Scholar 

  120. Schumaker L, Nikitakis N, Goloubeva O, Tan M, Taylor R, Cullen KJ. Elevated expression of glutathione S-transferase π and p53 confers poor prognosis in head and neck cancer patients treated with chemoradiotherapy but not radiotherapy alone. Clin Cancer Res. 2008;14:5877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Szanyi I, Ráth G, Móricz P, Somogyvári K, Révész P, Gerlinger I, Orsós Z, Ember I, Kiss I. Effects of cytochrome P450 1A1 and uridine-diphosphate-glucuronosyltransferase 1A1 allelic polymorphisms on the risk of development and the prognosis of head and neck cancers. Eur J Cancer. 2012;21:560–8.

    Article  CAS  Google Scholar 

  122. Sturgis EM, Ang KK. The epidemic of HPV-associated oropharyngeal cancer is here: is it time to change our treatment paradigms? J Natl Compr Cancer Netw. 2011;9:665–73.

    Article  Google Scholar 

  123. Marur S, Li S, Cmelak AJ, et al. E1308: phase II trial of induction chemotherapy followed by reduced-dose radiation and weekly cetuximab in patients with HPV-associated resectable squamous cell carcinoma of the oropharynx— ECOG-ACRIN Cancer Research Group. J Clin Oncol. 2016;35:490–7.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Moore EJ, Olsen KD, Kasperbauer JL. Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes. Laryngoscope. 2009;119:2156–64.

    Article  PubMed  Google Scholar 

  125. Weinstein GS, Quon H, O’Malley BW, Kim GG, Cohen MA. Selective neck dissection and deintensified postoperative radiation and chemotherapy for oropharyngeal cancer: a subset analysis of the university of Pennsylvania transoral robotic surgery trial. Laryngoscope. 2010;120:1749–55.

    Article  PubMed  Google Scholar 

  126. White HN, Moore EJ, Rosenthal EL, Carroll WR, Olsen KD, Desmond RA, Magnuson JS. Transoral robotic-assisted surgery for head and neck squamous cell carcinoma: one- and 2-year survival analysis. Arch Otolaryngol Head Neck Surg. 2010;136:1248–52.

    Article  PubMed  Google Scholar 

  127. Cohen MA, Weinstein GS, O’Malley BW, Feldman M, Quon H. Transoral robotic surgery and human papillomavirus status: oncologic results. Head Neck. 2011;33:573–80.

    Article  PubMed  Google Scholar 

  128. Moore EJ, Olsen SM, Laborde RR, García JJ, Walsh FJ, Price DL, Janus JR, Kasperbauer JL, Olsen KD. Long-term functional and oncologic results of Transoral robotic surgery for oropharyngeal squamous cell carcinoma. Mayo Clin Proc. 2012;87:219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Schiller JT, Castellsagué X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012;30:F123–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Joura EA, Giuliano AR, Iversen O-E, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372:711–23.

    Article  CAS  PubMed  Google Scholar 

  131. Joura EA, Garland SM, Paavonen J, Ferris DG, Perez G, Ault KA, Huh WK, Sings HL, James MK, Haupt RM. Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ. 2012;344:e1401. https://doi.org/10.1136/bmj.e1401.

    Article  PubMed  PubMed Central  Google Scholar 

  132. FUTURE I/II Study Group, Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, Brown DR, Koutsky LA, Tay EH, García P, Ault KA, Garland SM, Leodolter S, Olsson SE, Tang GW, Ferris DG, Paavonen J, Lehtinen M, Steben M, Bosch FX, Joura EA, Majewski S, Muñoz N, Myers ER, Villa LL, Taddeo FJ, Roberts C, Tadesse A, Bryan JT, Maansson R, Lu S, Vuocolo S, Hesley TM, Barr E, Haupt R. Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ. 2010;341:c3493. https://doi.org/10.1136/bmj.c3493.

    Article  Google Scholar 

  133. Yang A, Farmer E, Lin J, Wu T-C, Hung C-F. The current state of therapeutic and T cell-based vaccines against human papillomaviruses. Virus Res. 2017;231:148–65.

    Article  CAS  PubMed  Google Scholar 

  134. Best SR, Niparko KJ, Pai SI. Biology of HPV infection and immune therapy for HPV-related head and neck cancers. Otolaryngol Clin N Am. 2012;45:807–22.

    Article  Google Scholar 

  135. Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S. Immune suppression in head and neck cancers: a review. Clin Dev Immunol. 2010;2010:1. https://doi.org/10.1155/2010/701657.

    Article  CAS  Google Scholar 

  136. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  137. Mandal R, Şenbabaoğlu Y, Desrichard A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 1:e89829. https://doi.org/10.1172/jci.insight.89829.

  138. Ferris RL, Blumenschein GJ, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cohen EE, Harrington KJ, Le Tourneau C, et al. LBA45_PRPembrolizumab (pembro) vs standard of care (SOC) for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC): Phase 3 KEYNOTE-040 trial. Ann Oncol. 2017; https://doi.org/10.1093/annonc/mdx440.040.

  140. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther. 1994;1:5–13.

    PubMed  Google Scholar 

  142. Liu T-J, Zhang W-W, Taylor DL, Roth JA, Goepfert H, Clayman GL. Growth suppression of human head and neck Cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res. 1994;54:3662–7.

    CAS  PubMed  Google Scholar 

  143. Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE, Ryan P, Chiang Y, Chang EH. p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene. 1997;14:1735–46.

    Article  CAS  PubMed  Google Scholar 

  144. Nemunaitis J, Clayman G, Agarwala SS, et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res. 2009;15:7719–25.

    Article  CAS  PubMed  Google Scholar 

  145. Nemunaitis J, Nemunaitis J. Head and neck cancer: response to p53-based therapeutics. Head Neck. 2011;33:131–4.

    Article  PubMed  Google Scholar 

  146. Vermorken JB, Stöhlmacher-Williams J, Davidenko I, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013;14:697–710.

    Article  CAS  PubMed  Google Scholar 

  147. Mesía R, Henke M, Fortin A, et al. Chemoradiotherapy with or without panitumumab in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-1): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015;16:208–20.

    Article  CAS  PubMed  Google Scholar 

  148. Giralt J, Trigo J, Nuyts S, et al. Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015;16:221–32.

    Article  CAS  PubMed  Google Scholar 

  149. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–78.

    Article  CAS  PubMed  Google Scholar 

  150. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.

    Article  CAS  PubMed  Google Scholar 

  151. Cohen RB. Current challenges and clinical investigations of epidermal growth factor receptor (EGFR)- and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat Rev. 2014;40:567–77.

    Article  CAS  PubMed  Google Scholar 

  152. Martins RG, Parvathaneni U, Bauman JE, et al. Cisplatin and radiotherapy with or without erlotinib in locally advanced squamous cell carcinoma of the head and neck: a randomized phase II trial. J Clin Oncol. 2013;31:1415–21.

    Article  CAS  PubMed  Google Scholar 

  153. Argiris A, Ghebremichael M, Gilbert J, Lee J-W, Sachidanandam K, Kolesar JM, Burtness B, Forastiere AA. Phase III randomized, placebo-controlled trial of docetaxel with or without Gefitinib in recurrent or metastatic head and neck Cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31:1405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Harrington K, Temam S, Mehanna H, et al. Postoperative adjuvant Lapatinib and concurrent chemoradiotherapy followed by maintenance lapatinib monotherapy in high-risk patients with resected squamous cell carcinoma of the head and neck: a phase III, randomized, double-blind, placebo-controlled study. J Clin Oncol. 2015;33:4202–9.

    Article  CAS  PubMed  Google Scholar 

  155. Gregoire V, Hamoir M, Chen C, et al. Gefitinib plus cisplatin and radiotherapy in previously untreated head and neck squamous cell carcinoma: a phase II, randomized, double-blind, placebo-controlled study. Radiother Oncol. 2011;100:62–9.

    Article  CAS  PubMed  Google Scholar 

  156. Fortini ME. Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol. 2002;3:673–84.

    Article  CAS  PubMed  Google Scholar 

  157. Curry CL, Reed LL, Golde TE, Miele L, Nickoloff BJ, Foreman KE. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene. 2005;24:6333–44.

    Article  CAS  PubMed  Google Scholar 

  158. Huynh C, Poliseno L, Segura MF, et al. The novel gamma secretase inhibitor RO4929097 reduces the tumor initiating potential of melanoma. PLoS One. 2011;6:e25264. https://doi.org/10.1371/journal.pone.0025264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Maraver A, Fernández-Marcos PJ, Herranz D, et al. Therapeutic effect of γ-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma through derepression of DUSP1 phosphatase and inhibition of ERK. Cancer Cell. 2012;22:222. https://doi.org/10.1016/j.ccr.2012.06.014.

    Article  CAS  PubMed  Google Scholar 

  160. Portanova P, Notaro A, Pellerito O, Sabella S, Giuliano M, Calvaruso G. Notch inhibition restores TRAIL-mediated apoptosis via AP1-dependent upregulation of DR4 and DR5 TRAIL receptors in MDA-MB-231 breast cancer cells. Int J Oncol. 2013;43:121–30.

    Article  CAS  PubMed  Google Scholar 

  161. Yabuuchi S, Pai SG, Campbell NR, et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013;335:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tolcher AW, Messersmith WA, Mikulski SM, et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol. 2012;30:2348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Richter S, Bedard PL, Chen EX, et al. A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575). Investig New Drugs. 2014;32:243–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bellairs, J.A., Yesensky, J., Ku, J.A., Agrawal, N. (2019). Genomic Applications in Head and Neck Cancers. In: Netto, G., Kaul, K. (eds) Genomic Applications in Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-96830-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96830-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96829-2

  • Online ISBN: 978-3-319-96830-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics