Skip to main content

The WHIM Syndrome

  • Chapter
  • First Online:
Humoral Primary Immunodeficiencies

Abstract

The WHIM syndrome is a rare immunodeficiency characterized by Warts, Hypogammaglobulinemia, recurrent respiratory bacterial Infections, and Myelokathexis. Early studies identified that neutrophils in WHIM patients are retained in the bone marrow; severe peripheral neutropenia and lymphocytopenia were also observed. Infections of the upper respiratory tracts and lesions due to human papillomavirus (HPV) are common. Association with tetralogy of Fallot and Waldenström macroglobulinemia was described. The WHIM syndrome is mostly caused by heterozygous mutations on chromosome 2q21 that truncate the C-terminal tail of the chemokine receptor CXCR4, the cognate receptor to chemokine CXCL12. The CXCR4-CXCL12 interaction plays a key role in the recruitment of hematopoietic progenitors into the bone marrow and in the regulation of lymphocyte trafficking within secondary lymphoid organs. Current recommendations for WHIM syndrome include vaccinations and antibiotics to prevent infections, as well as usage of G-CSF and as an immune cell-mobilizing agent to combat myelokathexis. Intravenous immunoglobulin (IVIG) injections can be used to treat hypogammaglobulinemia.

Given the ability of AMD3100 to inhibit CXCR4 signaling, it has been suggested as a therapy for myelokathexis in WHIM syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Regan S, Newman AJ, Graham RC. “Myelokathexis”. Neutropenia with marrow hyperplasia. Am J Dis Child. 1977;131:655–8.

    Article  Google Scholar 

  2. Wetzler M, Talpaz M, Kleinerman ES, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med. 1990;89:663–72.

    Article  CAS  Google Scholar 

  3. Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood. 2004;104:444–52. https://doi.org/10.1182/blood-2003-10-3532.

    Article  CAS  PubMed  Google Scholar 

  4. Sallusto F, Lenig D, Forster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12. https://doi.org/10.1038/44385.

    Article  CAS  PubMed  Google Scholar 

  5. Molon B, Gri G, Bettella M, et al. T cell costimulation by chemokine receptors. Nat Immunol. 2005;6:465–71. https://doi.org/10.1038/ni1191.

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70–4. https://doi.org/10.1038/ng1149.

    Article  CAS  PubMed  Google Scholar 

  7. Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest. 2010;120:2423–31. https://doi.org/10.1172/JCI41649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 1999;10:463–71.

    Article  CAS  Google Scholar 

  9. Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol. 2009;16:20–6. https://doi.org/10.1097/MOH.0b013e32831ac557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chow KYC, Brotin É, Ben Khalifa Y, et al. A pivotal role for CXCL12 signaling in HPV-mediated transformation of keratinocytes: clues to understanding HPV-pathogenesis in WHIM syndrome. Cell Host Microbe. 2010;8:523–33. https://doi.org/10.1016/j.chom.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  11. Handisurya A, Schellenbacher C, Reininger B, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine. 2010;28:4837–41. https://doi.org/10.1016/j.vaccine.2010.04.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dotta L, Tassone L, Badolato R. Clinical and genetic features of Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome. Curr Mol Med. 2011;11:317–25.

    Article  CAS  Google Scholar 

  13. Lagane B, Chow KYC, Balabanian K, et al. CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood. 2008;112:34–44. https://doi.org/10.1182/blood-2007-07-102103.

    Article  CAS  PubMed  Google Scholar 

  14. McCormick PJ, Segarra M, Gasperini P, et al. Impaired recruitment of GrK6 and β-arrestin2 causes delayed internalization and desensitization of a WHIM syndrome-associated CXCR4 mutant receptor. PLoS One. 2009;4:e8102. https://doi.org/10.1371/journal.pone.0008102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balabanian K, Lagane B, Pablos JL, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood. 2005;105:2449–57. https://doi.org/10.1182/blood-2004-06-2289.

    Article  CAS  PubMed  Google Scholar 

  16. Kawai T, Choi U, Whiting-Theobald NL, et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol. 2005;33:460–8. https://doi.org/10.1016/j.exphem.2005.01.001.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Q, Chen H, Ojode T, et al. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood. 2012;120:181–9. https://doi.org/10.1182/blood-2011-12-395608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Q, Pan C, Lopez L, et al. WHIM Syndrome Caused by Waldenstrom’s Macroglobulinemia-Associated Mutation CXCR4 (L329fs). J Clin Immunol. 2016;36:397–405. https://doi.org/10.1007/s10875-016-0276-3.

    Article  CAS  PubMed  Google Scholar 

  19. Shin DW, Park SN, Kim SM, et al. WHIM syndrome with a novel CXCR4 variant in a Korean Child. Ann Lab Med. 2017;37:446–9.

    Article  Google Scholar 

  20. Balabanian K, Levoye A, Klemm L, et al. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest. 2008;118:1074–84. https://doi.org/10.1172/JCI33187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aprikyan AA, Liles WC, Park JR, et al. Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood. 2000;95:320–7.

    CAS  PubMed  Google Scholar 

  22. Taniuchi S, Yamamoto A, Fujiwara T, et al. Dizygotic twin sisters with myelokathexis: mechanism of its neutropenia. Am J Hematol. 1999;62:106–11.

    Article  CAS  Google Scholar 

  23. Kawai T, Choi U, Cardwell L, et al. WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus—truncated CXCR4. Blood. 2007;109:78–84. https://doi.org/10.1182/blood-2006-05-025296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walters KB, Green JM, Surfus JC, et al. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood. 2010;116:2803–11. https://doi.org/10.1182/blood-2010-03-276972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balabanian K, Brotin E, Biajoux V, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood. 2012;119:5722–30. https://doi.org/10.1182/blood-2012-01-403378.

    Article  CAS  PubMed  Google Scholar 

  26. McDermott DH, Liu Q, Ulrick J, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood. 2011;118:4957–62. https://doi.org/10.1182/blood-2011-07-368084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mc Guire PJ, Cunningham-Rundles C, Ochs H, Diaz GA. Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol. 2010;135:412–21. https://doi.org/10.1016/j.clim.2010.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mentzer WCJ, Johnston RBJ, Baehner RL, Nathan DG. An unusual form of chronic neutropenia in a father and daughter with hypogammaglobulinaemia. Br J Haematol. 1977;36:313–22.

    Article  Google Scholar 

  29. Kallikourdis M, Trovato AE, Anselmi F, et al. The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse. Blood. 2013;122:666–73. https://doi.org/10.1182/blood-2012-10-461830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biajoux V, Natt J, Freitas C, et al. Efficient plasma cell differentiation and trafficking require Cxcr4 desensitization. Cell Rep. 2016;17:193–205. https://doi.org/10.1016/j.celrep.2016.08.068.

    Article  CAS  PubMed  Google Scholar 

  31. Roselli G, Martini E, Lougaris V, et al. CXCL12 mediates aberrant costimulation of B lymphocytes in warts, hypogammaglobulinemia, infections, myelokathexis immunodeficiency. Front Immunol. 2017;8:1–12. https://doi.org/10.3389/fimmu.2017.01068.

    Article  CAS  Google Scholar 

  32. Sharpe AH. Mechanisms of costimulation. Immunol Rev. 2009;229:5–11. https://doi.org/10.1111/j.1600-065X.2009.00784.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kehry MR. CD40-mediated signaling in B cells. Balancing cell survival, growth, and death. J Immunol. 1996;156:2345–8.

    CAS  PubMed  Google Scholar 

  34. Badolato R, Dotta L, Tassone L, et al. Tetralogy of fallot is an uncommon manifestation of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. J Pediatr. 2012;161:763–5. https://doi.org/10.1016/j.jpeds.2012.05.058.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia. 2015;29:169–76. https://doi.org/10.1038/leu.2014.187.

    Article  CAS  PubMed  Google Scholar 

  36. Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46. https://doi.org/10.1182/blood-2013-09-525808.

    Article  CAS  PubMed  Google Scholar 

  37. Dale DC, Bolyard AA, Kelley ML, et al. The CXCR4 antagonist plerixafor is a potential therapy for myelokathexis, WHIM syndrome. Blood. 2011;118:4963–6. https://doi.org/10.1182/blood-2011-06-360586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al Ustwani O, Kurzrock R, Wetzler M. Genetics on a WHIM. Br J Haematol. 2014;164:15–23. https://doi.org/10.1111/bjh.12574.

    Article  CAS  PubMed  Google Scholar 

  39. McDermott DH, Liu Q, Velez D, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123:2308–16. https://doi.org/10.1182/blood-2013-09-527226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beaussant Cohen S, Fenneteau O, Plouvier E, et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis. 2012;7:71. https://doi.org/10.1186/1750-1172-7-71.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rezaei N, Hedayat M, Aghamohammadi A, Nichols KE. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J Allergy Clin Immunol. 2011;127:1323–9. https://doi.org/10.1016/j.jaci.2011.02.047.

    Article  Google Scholar 

  42. McDermott DH, Gao J-L, Murphy PM. Chromothriptic cure of WHIM syndrome: implications for bone marrow transplantation. Rare Dis (Austin, Tex). 2015;3:e1073430. https://doi.org/10.1080/21675511.2015.1073430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Viola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roselli, G., Kallikourdis, M., Viola, A. (2019). The WHIM Syndrome. In: D'Elios, M., Rizzi, M. (eds) Humoral Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-91785-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91785-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91784-9

  • Online ISBN: 978-3-319-91785-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics