Skip to main content

Animal Models of Idiopathic Scoliosis

  • Chapter
  • First Online:
The Genetics and Development of Scoliosis

Abstract

Structural deformity of the spine can present during embryonic development as well as during a range of postnatal growth and maturation in humans. The most common spine disorders observed in human are classified as idiopathic scoliosis (IS), with the majority of these presenting during adolescence. By definition there is a limited understanding of the underlying causes of these idiopathic disorders. Several animal models have been reported to display hallmarks and characteristic traits of IS ranging from pineal gland resection in chicken to surgically induced scoliosis in large animal models to more recent examples of heritable genetic models in mouse and zebrafish. Moreover, recent progress using human genomic studies coupled with genetically tractable models of IS using the mouse and zebrafish has begun to advance a more mechanistic understanding of the genetics and pathogenesis of this condition. In this chapter, we review the range of animal models for IS, highlighting the important findings from each model and addressing caveats for consideration. Studies using relevant animal models have tremendous potential to identify the mechanisms underlying IS and other diseases of the spine and offer an ethical and cost-effective platform for the development of novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech. 2011;4(1):31–41.

    Article  PubMed  CAS  Google Scholar 

  2. Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip Rev Dev Biol. 2012;1(3):401–23.

    Article  PubMed  CAS  Google Scholar 

  3. Koehl MA, Quillin KJ, Pell CA. Mechanical design of fiber-wound hydraulic skeletons: the stiffening and straightening of embryonic notochords. Am Zool. 2000;40:28–41.

    Google Scholar 

  4. Adams DS, Keller R, Koehl MA. The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development. 1990;110(1):115–30.

    PubMed  CAS  Google Scholar 

  5. Glickman NS, Kimmel CB, Jones MA, Adams RJ. Shaping the zebrafish notochord. Development. 2003;130(5):873–87.

    Article  PubMed  CAS  Google Scholar 

  6. Shapiro IM, Risbud MV. Introduction to the structure, function, and comparative anatomy of the vertebrae and the intervertebral disc. In: Shapiro IM, Risbud MV, editors. The intervertebral disc: molecular and structural studies of the disc in health and disease. Vienna: Springer; 2014. p. 3–15.

    Chapter  Google Scholar 

  7. Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn. 2008;237(12):3953–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Newton Ede MM, Jones SW. Adolescent idiopathic scoliosis: evidence for intrinsic factors driving aetiology and progression. Int Orthop. 2016;40(10):2075–80.

    Article  PubMed  Google Scholar 

  9. Jackson HC 2nd, Winkelmann RK, Bickel WH. Nerve endings in the human lumbar spinal column and related structures. J Bone Joint Surg Am. 1966;48(7):1272–81.

    Article  PubMed  Google Scholar 

  10. Kojima Y, Maeda T, Arai R, Shichikawa K. Nerve supply to the posterior longitudinal ligament and the intervertebral disc of the rat vertebral column as studied by acetylcholinesterase histochemistry. I. Distribution in the lumbar region. J Anat. 1990;169:237–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Man GC, Wang WW, Yim AP, Wong JH, Ng TB, Lam TP, et al. A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int J Mol Sci. 2014;15(9):16484–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lombardi G, Akoume MY, Colombini A, Moreau A, Banfi G. Biochemistry of adolescent idiopathic scoliosis. Adv Clin Chem. 2011;54:165–82.

    Article  PubMed  CAS  Google Scholar 

  13. Normand E, Franco A, Moreau A, Marcil V. Dipeptidyl Peptidase-4 and adolescent idiopathic scoliosis: expression in osteoblasts. Sci Rep. 2017;7(1):3173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Blecher R, Krief S, Galili T, Biton IE, Stern T, Assaraf E, et al. The proprioceptive system masterminds spinal alignment: insight into the mechanism of scoliosis. Dev Cell. 2017;42(4):388–99. e3

    Article  PubMed  CAS  Google Scholar 

  15. Pourquie O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell. 2011;145(5):650–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Giampietro PF, Dunwoodie SL, Kusumi K, Pourquie O, Tassy O, Offiah AC, et al. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans. Ann N Y Acad Sci. 2009;1151:38–67.

    Article  PubMed  CAS  Google Scholar 

  17. Sparrow DB, Chapman G, Dunwoodie SL. The mouse notches up another success: understanding the causes of human vertebral malformation. Mamm Genome. 2011;22(7–8):362–76.

    Article  PubMed  Google Scholar 

  18. Gansner JM, Mendelsohn BA, Hultman KA, Johnson SL, Gitlin JD. Essential role of lysyl oxidases in notochord development. Dev Biol. 2007;307(2):202–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gansner JM, Gitlin JD. Essential role for the alpha 1 chain of type VIII collagen in zebrafish notochord formation. Dev Dyn. 2008;237(12):3715–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Christiansen HE, Lang MR, Pace JM, Parichy DM. Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and post-embryonic axial growth. PLoS One. 2009;4(12):e8481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gray RS, Wilm TP, Smith J, Bagnat M, Dale RM, Topczewski J, et al. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations. Dev Biol. 2014;386(1):72–85.

    Article  PubMed  CAS  Google Scholar 

  22. Ellis K, Bagwell J, Bagnat M. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J Cell Biol. 2013;200(5):667–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sparrow DB, Chapman G, Smith AJ, Mattar MZ, Major JA, O'Reilly VC, et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell. 2012;149(2):295–306.

    Article  PubMed  CAS  Google Scholar 

  24. Purkiss SB, Driscoll B, Cole WG, Alman B. Idiopathic scoliosis in families of children with congenital scoliosis. Clin Orthop Relat Res. 2002;401:27–31.

    Article  Google Scholar 

  25. Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike S, et al. Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird Homeobox gene causes body Axis deformation. PLoS Genet. 2016;12(1):e1005802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hayes M, Gao X, Yu LX, Paria N, Henkelman RM, Wise CA, et al. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun. 2014;5:4777.

    Article  PubMed  CAS  Google Scholar 

  27. McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech. 2015;8(3):195–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Harrison DJ, Webb PJ. Scoliosis in the Rett syndrome: natural history and treatment. Brain and Development. 1990;12(1):154–6.

    Article  PubMed  CAS  Google Scholar 

  29. Taylor LJ. Severe spondylolisthesis and scoliosis in association with Marfan’s syndrome. Case report and review of the literature. Clin Orthop Relat Res. 1987;221:207–11.

    Google Scholar 

  30. Shirley ED, Demaio M, Bodurtha J. Ehlers-danlos syndrome in orthopaedics: etiology, diagnosis, and treatment implications. Sports Health. 2012;4(5):394–403.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blanco G, Coulton GR, Biggin A, Grainge C, Moss J, Barrett M, et al. The kyphoscoliosis (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle-specific protein. Hum Mol Genet. 2001;10(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  32. Chen F, Guo R, Itoh S, Moreno L, Rosenthal E, Zappitelli T, et al. First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome. J Bone Miner Res. 2014;29(6):1412–23.

    Article  PubMed  CAS  Google Scholar 

  33. Haller G, Alvarado D, McCall K, Yang P, Cruchaga C, Harms M, et al. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum Mol Genet. 2016;25(1):202–9.

    Article  PubMed  CAS  Google Scholar 

  34. Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, et al. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet. 2014;23(19):5271–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, et al. Adolescent idiopathic scoliosis. Nat Rev Dis Primers. 2015;1:15030.

    Article  PubMed  Google Scholar 

  36. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87(1):162–71.

    Article  PubMed  CAS  Google Scholar 

  38. Boszczyk BM, Boszczyk AA, Putz R. Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec. 2001;264(2):157–68.

    Article  PubMed  CAS  Google Scholar 

  39. Langenskiold A, Michelsson JE. Experimental progressive scoliosis in the rabbit. J Bone Joint Surg Br. 1961;43-B:116–20.

    Article  PubMed  CAS  Google Scholar 

  40. Langenskiold A, Michelsson JE. Experimental scoliosis. Acta Orthop Scand. 1959;29:158–9.

    PubMed  CAS  Google Scholar 

  41. Langenskiold A, Michelsson JE. The pathogenesis of experimental progressive scoliosis. Acta Orthop Scand Suppl. 1962;59:1–26.

    PubMed  CAS  Google Scholar 

  42. Kubota K, Doi T, Murata M, Kobayakawa K, Matsumoto Y, Harimaya K, et al. Disturbance of rib cage development causes progressive thoracic scoliosis: the creation of a nonsurgical structural scoliosis model in mice. J Bone Joint Surg Am. 2013;95(18):e130.

    Article  PubMed  Google Scholar 

  43. Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech. 1990;23(6):589–95.

    Article  PubMed  CAS  Google Scholar 

  44. Andriacchi T, Schultz A, Belytschko T, Galante J. A model for studies of mechanical interactions between the human spine and rib cage. J Biomech. 1974;7(6):497–507.

    Article  PubMed  CAS  Google Scholar 

  45. Grivas TB, Burwell RG, Purdue M, Webb JK, Moulton A. A segmental analysis of thoracic shape in chest radiographs of children. Changes related to spinal level, age, sex, side and significance for lung growth and scoliosis. J Anat. 1991;178:21–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Gurnett CA, Alaee F, Bowcock A, Kruse L, Lenke LG, Bridwell KH, et al. Genetic linkage localizes an adolescent idiopathic scoliosis and pectus excavatum gene to chromosome 18 q. Spine. 2009;34(2):E94–100.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hong JY, Suh SW, Park HJ, Kim YH, Park JH, Park SY. Correlations of adolescent idiopathic scoliosis and pectus excavatum. J Pediatr Orthop. 2011;31(8):870–4.

    Article  PubMed  Google Scholar 

  48. Dubousset J, Wicart P, Pomero V, Barois A, Estournet B. Spinal penetration index: new three-dimensional quantified reference for lordoscoliosis and other spinal deformities. J Orthop Sci. 2003;8(1):41–9.

    Article  PubMed  Google Scholar 

  49. Doi T, Harimaya K, Matsumoto Y, Iwamoto Y. Aortic location and flat chest in scoliosis: a prospective study. Fukuoka Igaku Zasshi. 2011;102(1):14–9.

    PubMed  Google Scholar 

  50. Ilharreborde B, Dubousset J, Le Huec JC. Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J. 2014;23(Suppl 4):S397–405.

    PubMed  Google Scholar 

  51. Caballero A, Barrios C, Burgos J, Hevia E, Correa C. Vertebral growth modulation by hemicircumferential electrocoagulation: an experimental study in pigs. Eur Spine J. 2011;20(Suppl 3):367–75.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Catanzariti JF, Agnani O, Guyot MA, Wlodyka-Demaille S, Khenioui H, Donze C. Does adolescent idiopathic scoliosis relate to vestibular disorders? A systematic review. Ann Phys Rehabil Med. 2014;57(6–7):465–79.

    Article  PubMed  Google Scholar 

  53. Hawasli AH, Hullar TE, Dorward IG. Idiopathic scoliosis and the vestibular system. Eur Spine J. 2015;24(2):227–33.

    Article  PubMed  Google Scholar 

  54. Hitier M, Hamon M, Denise P, Lacoudre J, Thenint MA, Mallet JF, et al. Lateral Semicircular Canal asymmetry in idiopathic scoliosis: an early link between biomechanical, hormonal and neurosensory theories? PLoS One. 2015;10(7):e0131120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Noshchenko A, Hoffecker L, Lindley EM, Burger EL, Cain CM, Patel VV, et al. Predictors of spine deformity progression in adolescent idiopathic scoliosis: a systematic review with meta-analysis. World J Orthop. 2015;6(7):537–58.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pialasse JP, Mercier P, Descarreaux M, Simoneau M. Sensorimotor control impairment in young adults with idiopathic scoliosis compared with healthy controls. J Manip Physiol Ther. 2016;39(7):473–9.

    Article  Google Scholar 

  57. Lambert FM, Malinvaud D, Glaunes J, Bergot C, Straka H, Vidal PP. Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus. J Neurosci. 2009;29(40):12477–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Lambert FM, Malinvaud D, Gratacap M, Straka H, Vidal PP. Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations. J Neurosci. 2013;33(16):6845–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Dahlhoff M, Emrich D, Wolf E, Schneider MR. Increased activation of the epidermal growth factor receptor in transgenic mice overexpressing epigen causes peripheral neuropathy. Biochim Biophys Acta. 2013;1832(12):2068–76.

    Article  PubMed  CAS  Google Scholar 

  60. Smit JJ, Baas F, Hoogendijk JE, Jansen GH, van der Valk MA, Schinkel AH, et al. Peripheral neuropathy in mice transgenic for a human MDR3 P-glycoprotein mini-gene. J Neurosci. 1996;16(20):6386–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Mogha A, Benesh AE, Patra C, Engel FB, Schoneberg T, Liebscher I, et al. Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci. 2013;33(46):17976–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Karner CM, Long F, Solnica-Krezel L, Monk KR, Gray RS. Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet. 2015;24(15):4365–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Buchan JG, Gray RS, Gansner JM, Alvarado DM, Burgert L, Gitlin JD, et al. Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Dev Dyn. 2014;243(12):1646–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Boswell CW, Ciruna B. Understanding idiopathic scoliosis: a new zebrafish School of Thought. Trends Genet. 2017;33(3):183–96.

    Article  PubMed  CAS  Google Scholar 

  65. Yang Z, Xie Y, Chen J, Zhang D, Yang C, Li M. High selenium may be a risk factor of adolescent idiopathic scoliosis. Med Hypotheses. 2010;75(1):126–7.

    Article  PubMed  CAS  Google Scholar 

  66. Lloyd HMS, Kirchhoff CA. Case study: scoliosis in a bonobo (Pan paniscus). J Med Primatol. 2018 Apr;47(2):114–116. doi: 10.1111/jmp.12325. Epub 2017 Nov 29.

    Article  PubMed  Google Scholar 

  67. Naique SB, Porter R, Cunningham AA, Hughes SP, Sanghera B, Amis AA. Scoliosis in an orangutan. Spine. 2003;28(7):E143–5.

    PubMed  Google Scholar 

  68. Berghan J, VIsser IN. Vertebral column malformations in New Zealand delphinids with a review of cases world wide. Aquat Mamm. 2000;26(1):17–25.

    Google Scholar 

  69. Ambert AM, Samuelson MM, Pitchford JL, Solangi M. Visually detectable vertebral malformations of a bottlenose dolphin (Tursiops truncatus) in the Mississippi sound. Aquat Mamm. 2017;43(4):6.

    Article  Google Scholar 

  70. Andrews B, Davis W, Parham D. Corporate response and facilitation of the rehabilitation of a California gray whale calf. Acad Radiol. 2001;Aquatic Mammals 273:209–11.

    Google Scholar 

  71. Ellis Giddens W, Ryland M, Casson CJ. Idiopathic scoliosis in a Newborn Sea otter, Enhydra lutris (L.). J Wildl Dis. 1984;20(3):248–50.

    Article  Google Scholar 

  72. Mochida J, Benson DR, Abbott U, Rucker RB. Neuromorphometric changes in the ventral spinal roots in a scoliotic animal. Spine. 1993;18(3):350–5.

    Article  PubMed  CAS  Google Scholar 

  73. Nakai S. Histological and histochemical changes in the neck muscles of spontaneously occurring scoliosis in a special strain of Japanese quail, SQOHM. Nihon Seikeigeka Gakkai Zasshi. 1990;64(4):229–39.

    PubMed  CAS  Google Scholar 

  74. Sobajima S, Kin A, Baba I, Kanbara K, Semoto Y, Abe M. Implication for melatonin and its receptor in the spinal deformities of hereditary Lordoscoliotic rabbits. Spine. 2003;28(6):554–8.

    PubMed  Google Scholar 

  75. Grimes DT, Boswell CW, Morante NF, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science. 2016;352(6291):1341–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gorman KF, Tredwell SJ, Breden F. The mutant guppy syndrome curveback as a model for human heritable spinal curvature. Spine. 2007;32(7):735–41.

    Article  PubMed  Google Scholar 

  77. Gorman KF, Christians JK, Parent J, Ahmadi R, Weigel D, Dreyer C, et al. A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC Genet. 2011;12(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353–67.

    Article  PubMed  CAS  Google Scholar 

  79. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One. 2013;8(7):e68708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 2014;24(1):142–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Luderman LN, Unlu G, Knapik EW. Zebrafish developmental models of skeletal diseases. Curr Top Dev Biol. 2017;124:81–124.

    Article  PubMed  Google Scholar 

  82. Fisher S, Jagadeeswaran P, Halpern ME. Radiographic analysis of zebrafish skeletal defects. Dev Biol. 2003;264(1):64–76.

    Article  PubMed  CAS  Google Scholar 

  83. Henke K, Daane JM, Hawkins MB, Dooley CM, Busch-Nentwich EM, Stemple DL, et al. Genetic screen for postembryonic development in the zebrafish (Danio rerio): dominant mutations affecting adult form. Genetics. 2017;207(2):609–23.

    PubMed  PubMed Central  Google Scholar 

  84. Paul S, Schindler S, Giovannone D, de Millo Terrazzani A, Mariani FV, Crump JG. Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration. Development. 2016;143(12):2066–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Huitema LF, Apschner A, Logister I, Spoorendonk KM, Bussmann J, Hammond CL, et al. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc Natl Acad Sci U S A. 2012;109(52):21372–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mackay EW, Apschner A, Schulte-Merker S. Vitamin K reduces hypermineralisation in zebrafish models of PXE and GACI. Development. 2015;142(6):1095–101.

    Article  PubMed  CAS  Google Scholar 

  87. Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013;45(6):676–9.

    Article  PubMed  CAS  Google Scholar 

  88. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science. 2009;325(5946):1402–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Geng FS, Abbas L, Baxendale S, Holdsworth CJ, Swanson AG, Slanchev K, et al. Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development. 2013;140(21):4362–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–40.

    Article  PubMed  CAS  Google Scholar 

  91. Cao Y, Min J, Zhang Q, Li H, Li H. Associations of LBX1 gene and adolescent idiopathic scoliosis susceptibility: a meta-analysis based on 34,626 subjects. BMC Musculoskelet Disord. 2016;17:309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chettier R, Nelson L, Ogilvie JW, Albertsen HM, Ward K. Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS One. 2015;10(2):e0117708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet. 2014;51(6):401–6.

    Article  PubMed  CAS  Google Scholar 

  94. Brohmann H, Jagla K, Birchmeier C. The role of Lbx1 in migration of muscle precursor cells. Development. 2000;127(2):437–45.

    PubMed  CAS  Google Scholar 

  95. Kruger M, Schafer K, Braun T. The homeobox containing gene Lbx1 is required for correct dorsal-ventral patterning of the neural tube. J Neurochem. 2002;82(4):774–82.

    Article  PubMed  CAS  Google Scholar 

  96. Muller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, et al. The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron. 2002;34(4):551–62.

    Article  PubMed  CAS  Google Scholar 

  97. Sieber MA, Storm R, Martinez-de-la-Torre M, Muller T, Wende H, Reuter K, et al. Lbx1 acts as a selector gene in the fate determination of somatosensory and viscerosensory relay neurons in the hindbrain. J Neurosci. 2007;27(18):4902–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Kilian B, Mansukoski H, Barbosa FC, Ulrich F, Tada M, Heisenberg CP. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev. 2003;120(4):467–76.

    Article  PubMed  CAS  Google Scholar 

  99. Madsen EC, Gitlin JD. Zebrafish mutants calamity and catastrophe define critical pathways of gene-nutrient interactions in developmental copper metabolism. PLoS Genet. 2008;4(11):e1000261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mendelsohn BA, Yin C, Johnson SL, Wilm TP, Solnica-Krezel L, Gitlin JD. Atp7a determines a hierarchy of copper metabolism essential for notochord development. Cell Metab. 2006;4(2):155–62.

    Article  PubMed  CAS  Google Scholar 

  101. Hubaud A, Pourquie O. Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol. 2014;15(11):709–21.

    Article  PubMed  CAS  Google Scholar 

  102. Yu X, Ng CP, Habacher H, Roy S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet. 2008;40(12):1445–53.

    Article  PubMed  CAS  Google Scholar 

  103. Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn. 2009;238(12):2975–3015.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Turgut M, Cullu E, Uysal A, Yurtseven ME, Alparslan B. Chronic changes in cerebrospinal fluid pathways produced by subarachnoid kaolin injection and experimental spinal cord trauma in the rabbit: their relationship with the development of spinal deformity. An electron microscopic study and magnetic resonance imaging evaluation. Neurosurg Rev. 2005;28(4):289–97.

    Article  PubMed  Google Scholar 

  105. Chuma A, Kitahara H, Minami S, Goto S, Takaso M, Moriya H. Structural scoliosis model in dogs with experimentally induced syringomyelia. Spine. 1997;22(6):589–94. discussion 95

    Article  PubMed  CAS  Google Scholar 

  106. Godzik J, Dardas A, Kelly MP, Holekamp TF, Lenke LG, Smyth MD, et al. Comparison of spinal deformity in children with Chiari I malformation with and without syringomyelia: matched cohort study. Eur Spine J. 2016;25(2):619–26.

    Article  PubMed  CAS  Google Scholar 

  107. Ogura Y, Kou I, Takahashi Y, Takeda K, Minami S, Kawakami N, et al. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Hum Mol Genet. 2017;26(20):4086–92.

    Article  PubMed  CAS  Google Scholar 

  108. Patten SA, Margaritte-Jeannin P, Bernard JC, Alix E, Labalme A, Besson A, et al. Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest. 2015;125(3):1124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 2011;43(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  110. Jaffe KM, Grimes DT, Schottenfeld-Roames J, Werner ME, Ku TS, Kim SK, et al. c21orf59/kurly controls both cilia motility and polarization. Cell Rep. 2016;14(8):1841–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Serluca FC, Xu B, Okabe N, Baker K, Lin SY, Sullivan-Brown J, et al. Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning. Development. 2009;136(10):1621–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sullivan-Brown J, Schottenfeld J, Okabe N, Hostetter CL, Serluca FC, Thiberge SY, et al. Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev Biol. 2008;314(2):261–75.

    Article  PubMed  CAS  Google Scholar 

  113. Eisen JS, Smith JC. Controlling morpholino experiments: don’t stop making antisense. Development. 2008;135(10):1735–43.

    Article  PubMed  CAS  Google Scholar 

  114. Kim HK, Aruwajoye O, Sucato D, Richards BS, Feng GS, Chen D, et al. Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and kyphosis in mice. Spine. 2013;38(21):E1307–12.

    Article  PubMed  Google Scholar 

  115. Tidyman WE, Rauen KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009;19(3):230–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Henry SP, Liang S, Akdemir KC, de Crombrugghe B. The postnatal role of Sox9 in cartilage. J Bone Miner Res. 2012;27(12):2511–25.

    Article  PubMed  CAS  Google Scholar 

  117. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Settle SH Jr, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol. 2003;254(1):116–30.

    Article  PubMed  CAS  Google Scholar 

  119. Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–51.

    Article  PubMed  CAS  Google Scholar 

  120. Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP, et al. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(12):1924–32.

    Google Scholar 

  121. Hung VW, Qin L, Cheung CS, Lam TP, Ng BK, Tse YK, et al. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2005;87(12):2709–16.

    PubMed  CAS  Google Scholar 

  122. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.

    Article  PubMed  CAS  Google Scholar 

  123. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911–21.

    Article  PubMed  CAS  Google Scholar 

  124. Valverde-Franco G, Liu H, Davidson D, Chai S, Valderrama-Carvajal H, Goltzman D, et al. Defective bone mineralization and osteopenia in young adult FGFR3−/− mice. Hum Mol Genet. 2004;13(3):271–84.

    Article  PubMed  CAS  Google Scholar 

  125. Valverde-Franco G, Binette JS, Li W, Wang H, Chai S, Laflamme F, et al. Defects in articular cartilage metabolism and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet. 2006;15(11):1783–92.

    Article  PubMed  CAS  Google Scholar 

  126. Gao C, Chen BP, Sullivan MB, Hui J, Ouellet JA, Henderson JE, et al. Micro CT analysis of spine architecture in a mouse model of scoliosis. Front Endocrinol (Lausanne). 2015;6:38.

    Google Scholar 

  127. Clin J, Aubin CE, Parent S, Labelle H. A biomechanical study of the Charleston brace for the treatment of scoliosis. Spine. 2010;35(19):E940–7.

    Article  PubMed  Google Scholar 

  128. MacIntyre NJ, Recknor CP, Grant SL, Recknor JC. Scores on the safe functional motion test predict incident vertebral compression fracture. Osteoporos Int : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2014;25(2):543–50.

    Google Scholar 

  129. Makrythanasis P, Temtamy S, Aglan MS, Otaify GA, Hamamy H, Antonarakis SE. A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly. Hum Mutat. 2014;35(8):959–63.

    Article  PubMed  CAS  Google Scholar 

  130. Komatsu Y, Chusho H, Tamura N, Yasoda A, Miyazawa T, Suda M, et al. Significance of C-type natriuretic peptide (CNP) in endochondral ossification: analysis of CNP knockout mice. J Bone Miner Metab. 2002;20(6):331–6.

    Article  PubMed  Google Scholar 

  131. Tsuji T, Kunieda T. A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem. 2005;280(14):14288–92.

    Article  PubMed  CAS  Google Scholar 

  132. Miura K, Kim OH, Lee HR, Namba N, Michigami T, Yoo WJ, et al. Overgrowth syndrome associated with a gain-of-function mutation of the natriuretic peptide receptor 2 (NPR2) gene. Am J Med Genet A. 2014;164A(1):156–63.

    Article  PubMed  CAS  Google Scholar 

  133. Miura K, Namba N, Fujiwara M, Ohata Y, Ishida H, Kitaoka T, et al. An overgrowth disorder associated with excessive production of cGMP due to a gain-of-function mutation of the natriuretic peptide receptor 2 gene. PLoS One. 2012;7(8):e42180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Waller-Evans H, Promel S, Langenhan T, Dixon J, Zahn D, Colledge WH, et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS One. 2010;5(11):e14047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Monk KR, Oshima K, Jors S, Heller S, Talbot WS. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development. 2011;138(13):2673–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Brochhausen C, Turial S, Muller FK, Schmitt VH, Coerdt W, Wihlm JM, et al. Pectus excavatum: history, hypotheses and treatment options. Interact Cardiovasc Thorac Surg. 2012;14(6):801–6.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wu S, Sun X, Zhu W, Huang Y, Mou L, Liu M, et al. Evidence for GAL3ST4 mutation as the potential cause of pectus excavatum. Cell Res. 2012;22(12):1712–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lefebvre V, Bhattaram P. Vertebrate skeletogenesis. Curr Top Dev Biol. 2010;90:291–317.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Fleming A, Keynes R, Tannahill D. A central role for the notochord in vertebral patterning. Development. 2004;131(4):873–80.

    Article  PubMed  CAS  Google Scholar 

  140. Grotmol S, Kryvi H, Nordvik K, Totland GK. Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol (Berl). 2003;207(4–5):263–72.

    Article  Google Scholar 

  141. Haga Y, Dominique VJ 3rd, Du SJ. Analyzing notochord segmentation and intervertebral disc formation using the twhh: gfp transgenic zebrafish model. Transgenic Res. 2009;18(5):669–83.

    Article  PubMed  CAS  Google Scholar 

  142. Cortes DH, Elliott DM. The intervertebral disc: overview of disc mechanics. In: Shapiro IM, Risbud MV, editors. The intervertebral disc: molecular and structural studies of the disc in health and disease. Vienna: Springer; 2014. p. 17–31.

    Chapter  Google Scholar 

  143. Bruggeman BJ, Maier JA, Mohiuddin YS, Powers R, Lo Y, Guimaraes-Camboa N, et al. Avian intervertebral disc arises from rostral sclerotome and lacks a nucleus pulposus: implications for evolution of the vertebrate disc. Dev Dyn. 2012;241(4):675–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Inohaya K, Takano Y, Kudo A. The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn. 2007;236(11):3031–46.

    Article  PubMed  CAS  Google Scholar 

  145. Irie K, Kuroda Y, Mimori N, Hayashi S, Abe M, Tsuji N, et al. Histopathology of a wavy medaka. J Toxicol Pathol. 2016;29(2):115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci U S A. 1999;96(7):3819–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537(7621):508–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, et al. Disease model discovery from 3,328 gene knockouts by the international mouse phenotyping consortium. Nat Genet. 2017;49(8):1231–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Roberto Gonzalez for zebrafish histology and Drs. Michel Bagnat, Christina Gurnett, and Gabriel Haller for critical discussion of this manuscript. This work was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01-AR072009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Scott Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Gray, R.S. (2018). Animal Models of Idiopathic Scoliosis. In: Kusumi, K., Dunwoodie, S. (eds) The Genetics and Development of Scoliosis. Springer, Cham. https://doi.org/10.1007/978-3-319-90149-7_5

Download citation

Publish with us

Policies and ethics