Compact Inner Product Encryption from LWE

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)

Abstract

Predicate encryption provides fine-grained access control and has attractive applications. In this paper, We construct an compact inner product encryption scheme from the standard Learning with Errors (LWE) assumption that has compact public-key and achieves weakly attribute-hiding in the standard model. In particular, our scheme only needs two public matrices to support inner product over vector space \(\mathbb {Z}_q^{\log \lambda }\), and \((\lambda / \log \lambda )\) public matrices to support vector space \(\mathbb {Z}_q^{\lambda }\).

Our construction is the first compact functional encryption scheme based on lattice that goes beyond the very recent optimizations of public parameters in identity-based encryption setting. The main technique in our compact IPE scheme is a novel combination of IPE scheme of Agrawal, Freeman and Vaikuntanathan (Asiacrypt 2011), fully homomorphic encryption of Gentry, Sahai and Waters (Crypto 2013) and vector encoding schemes of Apon, Fan and Liu (Eprint 2017).

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H) IBE in the standard model. In: Gilbert [16], pp. 553–572 (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_2CrossRefGoogle Scholar
  3. 3.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press, May 1996Google Scholar
  4. 4.
    Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_17CrossRefGoogle Scholar
  5. 5.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Apon, D., Fan, X., Liu, F.-H,: Vector encoding over lattices and its applications. Cryptology ePrint Archive, Report 2017/455 (2017). http://eprint.iacr.org/2017/455
  7. 7.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society Press, May 2007Google Scholar
  8. 8.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_30CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_29CrossRefGoogle Scholar
  12. 12.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert [16], pp. 523–552 (2010)CrossRefGoogle Scholar
  13. 13.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009Google Scholar
  14. 14.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008Google Scholar
  15. 15.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5CrossRefGoogle Scholar
  16. 16.
    Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5CrossRefGoogle Scholar
  17. 17.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545–554. ACM Press, June 2013Google Scholar
  18. 18.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006. Available as Cryptology ePrint Archive Report 2006/309Google Scholar
  19. 19.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_9CrossRefGoogle Scholar
  20. 20.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  21. 21.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556
  22. 22.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005Google Scholar
  23. 23.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
  24. 24.
    Xagawa, K.: Improved (hierarchical) inner-product encryption from lattices. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 235–252. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_15CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Cornell UniversityIthacaUSA

Personalised recommendations