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Abstract. Predicate encryption provides fine-grained access control and
has attractive applications. In this paper, We construct an compact
inner product encryption scheme from the standard Learning with Errors
(LWE) assumption that has compact public-key and achieves weakly
attribute-hiding in the standard model. In particular, our scheme only
needs two public matrices to support inner product over vector space
Z
log λ
q , and (λ/ log λ) public matrices to support vector space Z

λ
q .

Our construction is the first compact functional encryption scheme
based on lattice that goes beyond the very recent optimizations of pub-
lic parameters in identity-based encryption setting. The main technique
in our compact IPE scheme is a novel combination of IPE scheme of
Agrawal, Freeman and Vaikuntanathan (Asiacrypt 2011), fully homo-
morphic encryption of Gentry, Sahai and Waters (Crypto 2013) and vec-
tor encoding schemes of Apon, Fan and Liu (Eprint 2017).

1 Introduction

Encryption has traditionally been regarded as a way to ensure confidentiality
of an end-to-end communication. However, with the emergence of complex net-
works and cloud computing, recently the crypto community has been re-thinking
the notion of encryption to address security concerns that arise in these more
complex environments. Functional encryption [10,21], generalized from identity
based encryption [8,23] and attribute based encryption [7,18], provides a satis-
fying solutions to this problem in theory. Two features provided by functional
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encryption are fine-grained access and computing on encrypted data. The fine-
grained access part is formalized as a cryptographic notion, named predicate
encryption [11,19]. In predicate encryption system, each ciphertext ct is associ-
ated with an attribute a while each secret key sk is associated with a predicate
f . A user holding the key sk can decrypt ciphertext ct if and only if f(a) = 0.
Moreover, the attribute a is kept hidden.

With several significant improvements on quantum computing, the com-
munity is working intensively on developing applications whose security holds
even against quantum attacks. Lattice-based cryptography, the most promising
candidate against quantum attacks, has matured significantly since the early
works of Ajtai [3] and Regev [22]. Most cryptographic primitives, ranging from
basic public-key encryption (PKE) [22] to more advanced schemes e.g., identity-
based encryption (IBE) [1,12], attribute-based encryption (ABE) [9,17], fully-
homomorphic encryption (FHE) [13], etc., can be built from now canonical lattice
hardness assumptions, such as Regev’s Learning with Errors (LWE). From the
above facts, we can draw the conclusion that our understanding about instanti-
ating different cryptographic primitives based on lattices is quite well. However,
for improving the efficiency of existent lattice-based construction, e.g. reducing
the size of public parameters and ciphertexts, or simplifying the decryption algo-
rithm, our understanding is limited. Besides the theoretical interests in shrinking
the size of ciphertext, as the main motivation of studying functional encryption
comes from its potential deployment in complex networks and cloud computing,
thus the size of transmitted data is a bottleneck of current lattice-based con-
structions. Combining all these, this brings us to the following open question:

Can we optimize the size of public parameters and ciphertexts of other
functional encryption scheme beyond identity based encryption?

1.1 Our Contributions

We positively answer the above question by proposing the first lattice-based
compact inner product encryption (IPE). Roughly speaking, in an IPE scheme,
the secret key sk is associated with a predicate vector v ∈ Z

t
q and the ciphertext

is associated with an attribute vector w ∈ Z
t
q. The decryption works if and only

if the inner product 〈v,w〉 = 0. Despite this apparently restrictive structure,
inner product predicates can support conjunction, subset and range queries on
encrypted data [11], as well as disjunctions, polynomial evaluation, and CNF
and DNF formulas [19]. Our construction can be summarized in the following
informal theorem:

Theorem 1.1 (Main). Under the standard Learning with Errors assumption,
there is an IPE scheme satisfying weak attribute-hiding property for predi-
cate/attribute vector of length t = log n, where (1) the modulus q is a prime
of size polynomial in the security parameter n, (2) ciphertexts consist of a vector
in Z

2m+1
q , where m is the lattice column dimension, and (3) the public parame-

ters consists two matrices in Z
n×m
q and a vector in Z

n
q .
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Remark 1.2. Our technique only allows us to prove a weak form of anonymity
(“attribute hiding”). Specifically, given a ciphertext ct and a number of keys that
do not decrypt ct, the user cannot determine the attribute associated with ct.
In the strong form of attribute hiding, the user cannot determine the attribute
associated with ct even when given keys that do decrypt ct. The weakened form
of attribute hiding we do achieve is nonetheless more that is required for ABE
and should be sufficient for many applications of PE. See Sect. 2 for more detail.

We can also extend our compact IPE construction to support t = poly(n)-
length attribute vectors. Let t′ = t/ log n, our IPE construction supporting
poly(n)-length vectors can be stated in the following corollary:

Corollary 1.3. Under the standard Learning with Errors assumption, there is
an IPE scheme with weak attribute-hiding property supporting predicate/attribute
vector of length t = poly(n), where (1) the modulus q is a prime of size polynomial
in the security parameter n, (2) ciphertexts consist of a vector in Z

(t′+1)m+1
q ,

where m is the lattice column dimension and (3) the public parameters consists
(t′ + 1) matrices in Z

n×m
q and a vector in Z

n
q .

In addition to reducing the size of public parameters and ciphertexts, our decryp-
tion algorithm is computed in an Single-Instruction-Multiple-Data (SIMD) man-
ner. In prior works [2,24], the decryption computes the inner product between
the predicate vector and ciphertext by (1) decomposing the predicate vector, (2)
multiplying-then-adding the corresponding vector bit and ciphertext, entry-by-
entry. Our efficient decryption algorithm achieves the inner product by just one
vector-matrix multiplication.

1.2 Our Techniques

Our high-level approach to compact inner product encryption from LWE begins
by revisiting the first lattice-based IPE construction [2] and the novel fully homo-
morphic encryption proposed recently by Gentry et al. [15].

The Agrawal-Freeman-Vaikuntanathan IPE. We first briefly review the
construction of IPE in [2]. Their construction relies on the algebraic structure of
ABB-IBE [1] to solve “lattice matching” problem. Lattice matching means the
lattice structure computed in decryption algorithm matches the structure used in
key generation, and since the secret key is a short trapdoor of the desired lattice,
thus the decryption succeeds. To encode a predicate vector v ∈ Z

t
q according

to [2], the key generation first computes the r-ary decomposition of each entry
of v as vi =

∑k
j=0 vijr

j , and constructs the v-specific lattice as

[A|Av ] = [A|
t∑

i=1

k∑

j=0

vijAij ]
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by “mixing” a long public matrices (A, {Aij}) ∈ Z
n×m
q . The secret key skv is

a short trapdoor of lattice Λ⊥
q ([A|∑t

i=1

∑k
j=0 vijAij ]). To encode an attribute

vector w ∈ Z
t
q, for i ∈ [t], j ∈ [k], construct the w-specific vector as

cij = sT(Aij + rjwiB) + noise

for a randomly chosen vector s ∈ Z
n
q and a public matrix B ∈ Z

n×m
q . To reduce

the noise growth in the inner produce computation, decryption only needs to
multiply-then-add the r-ary representation of vij to its corresponding cij , as

t∑

i=1

k∑

j=0

vijrij = sT(
t∑

i=1

k∑

j=0

vijAij + 〈v,w〉B) + noise

when 〈v,w〉 = 0, the (〈v,w〉B) part vanishes, thus the lattice computed after
inner produce matches the Av part in the key generation. Then the secret key
skv can be used to decrypt the ciphertext. Therefore, the number of matrices
in public parameters or vectors in ciphertext is quasilinear in the dimension of
vectors.

Using GSW-FHE to compute inner product. Recent progress in fully
homomorphic encryption [15] makes us re-think the process of computing inner
product. We wonder whether we can use GSW-FHE [15] along with its simpli-
fication [4] to simplify the computing procedure. Recall ciphertext of message
x ∈ Zq in GSW-FHE can be view in the form ctx = AR+xG, where A ∈ Z

n×m
q

is a LWE matrix, R ∈ Z
m×m
q is a random small matrix and G is the “gadget

matrix” as first (explicitly) introduced in the work [20]. The salient point is that
there is an efficiently computable function G−1, so that (1) ctx ·G−1(yG) = ctxy,
and (2) each entry in matrix G−1(yG) is just 0 or 1, and thus has small norm.
These two nice properties can shrink the size of public parameters (ciphertext)
from quasilinear to linear. In particular, to encoding a predicate vector v ∈ Z

t
q,

we construct the v-specific lattice as

[A|Av ] = [A|
t∑

i=1

AiG−1(viG)]

where the number of public matrices is t + 1. To encode an attribute vector
w ∈ Z

t
q, for i ∈ [t], construct the w-specific vector as

ci = sT(Ai + wiG) + noise

Then, we can compute the inner product as

t∑

i=1

ci · G−1(viG) = sT(
t∑

i=1

AiG−1(viG) + 〈v,w〉G) + noise

Since G−1(viG) is small norm, the decryption succeeds when 〈v,w〉 = 0.
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Achieving public parameters of two matrices. Our final step is to bring
the size of public parameters (or ciphertext) to constant for (t = log λ)-length
vectors. Inspired by recent work [6] in optimizing size of public parameters in
the IBE setting, we use their vector encoding method to further optimize our
IPE construction. The vector encoding for encoding v ∈ Z

t
q is

Ev =
[
v1In| · · · |vtIn

] · Gtn,�,m

where Gtn,�,m ∈ Z
tn×m
q is the generalized gadget matrix introduced in [6,20].

The dimension of this generalized gadget matrix tn × tn log� m. By setting t =
log q and � = n, we can obtain the similar column dimension as origin gadget
matrix, i.e. O(n log q). Then the v-specific lattice becomes

Av = A1 · G−1
dn,�,m

(
⎡

⎢
⎣

v1In

...
vdIn

⎤

⎥
⎦ · Gn,2,m

)

and the w-specific ciphertext becomes

c = sT(A1 + Ew ) + noise

The inner product can be computed in an SIMD way, as

c · G−1
dn,�,m

( ⎡
⎢⎣

v1In

...
vdIn

⎤
⎥⎦ · Gn,2,m

)
≈ sT(A1 · G−1

dn,�,m

( ⎡
⎢⎣

v1In

...
vdIn

⎤
⎥⎦Gn,2,m

)
+ 〈v, w〉Gn,2,m)

As such, our final IPE system contains only two matrices (A,A1) (and a vector
u), and the ciphertext consists of two vectors. By carefully twisting the vector
encoding and proof techniques shown in [2], we show our IPE construction satis-
fies weakly attribute-hiding. Our IPE system can also be extended in a “parallel
repetition” manner to support (t = λ)-length vectors, as Corollary 1.3 states.

1.3 Related Work

In this section, we provide a comparison with the first IPE construction [2] and
its follow-up improvement [24]. In [24], Xagawa used the “Full-Rank Difference
encoding”, proposed in [1] to map the vector Z

t
q to a matrix in Z

n×n
q . The

size of public parameters (or ciphertext) in his scheme depends linearly on the
length of predicate/attribute vectors, and the “Full-Rank Difference encoding”
incurs more computation overhead than embedding GSW-FHE structure in IPE
construction as described above. The detailed comparison is provided in Table 1
for length parameter t = log λ.
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Table 1. Comparison of lattice-based IPE scheme

Schemes # of Z
n×m
q mat. in |pp| # of Z

m
q vec. in |ct| LWE param 1/α

[2] O(λ log λ) O(λ log λ) O(λ3.5)

[24] O(λ) O(λ) O(λ4)

Ours 2 2 O(λ4 log λ)

2 Preliminaries

Notation. Let λ be the security parameter, and let ppt denote probabilistic
polynomial time. We use bold uppercase letters to denote matrices M, and bold
lowercase letters to denote vectors v. We write M̃ to denote the Gram-Schmidt
orthogonalization of M. We write [n] to denote the set {1, . . . , n}, and |t| to
denote the number of bits in the string t. We denote the i-th bit s by s[i]. We
say a function negl(·) : N → (0, 1) is negligible, if for every constant c ∈ N,
negl(n) < n−c for sufficiently large n.

2.1 Inner Product Encryption

We recall the syntax and security definition of inner product encryption (IPE)
[2,19]. IPE can be regarded as a generalization of predicate encryption. An IPE
scheme Π = (Setup,KeyGen,Enc,Dec) can be described as follows:

Setup(1λ): On input the security parameter λ, the setup algorithm outputs public
parameters pp and master secret key msk.

KeyGen(msk,v): On input the master secret key msk and a predicate vector v,
the key generation algorithm outputs a secret key skv for vector v.

Enc(pp,w, μ): On input the public parameter pp and an attribute/message pair
(w, μ), it outputs a ciphertext ctw .

Dec(skv , ctw ): On input the secret key skv and a ciphertext ctw , it outputs the
corresponding plaintext μ if 〈v,w〉 = 0; otherwise, it outputs ⊥.

Definition 2.1 (Correctness). We say the IPE scheme described above is
correct, if for any (msk, pp) ← Setup(1λ), any message μ, any predicate vec-
tor v ∈ Z

d
q , and attribute vector w ∈ Z

d
q such that 〈v,w〉 = 0, we have

Dec(skv , ctw ) = μ, where skw ← KeyGen(msk,v) and ctv ← Enc(pp,w, μ).

Security. For the weakly attribute-hiding property of IPE, we use the following
experiment to describe it. Formally, for any ppt adversary A, we consider the
experiment ExptIPEA (1λ):

– Setup: Adversary A sends two challenge attribute vectors w0,w1 ∈ Z
d
q to

challenger. A challenger runs the Setup(1λ) algorithm, and sends back the
master public key pp.
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– Query Phase I: Proceeding adaptively, the adversary A queries a sequence
of predicate vectors (v1, . . . ,vm) subject to the restriction that 〈vi,w0〉 �=
0 and 〈vi,w1〉 �= 0. On the i-th query, the challenger runs skv i

→
KeyGen(msk,vi), and sends the result skv i to A.

– Challenge: Once adversary A decides that Query Phase I is over, he outputs
two length-equal messages (μ∗

0, μ
∗
1) and sends them to challenger. In response,

the challenger selects a random bit b∗ ∈ {0, 1}, and sends the ciphertext
ct∗ ← Enc(pp,wb∗ , μb∗) to adversary A.

– Query Phase II: Adversary A continues to issue secret key queries
(vm+1, . . . ,vn) adaptively, subject to the restriction that 〈vi,w0〉 �= 0 and
〈vi,w1〉 �= 0. The challenger responds by sending back keys skv i

as in Query
Phase I.

– Guess: Adversary A outputs a guess b′ ∈ {0, 1}.

We note that query phases I and II can happen polynomial times in terms of
security parameter. The advantage of adversary A in attacking an IPE scheme
Π is defined as:

AdvA(1λ) =
∣
∣
∣
∣Pr[b∗ = b′] − 1

2

∣
∣
∣
∣ ,

where the probability is over the randomness of the challenger and adversary.

Definition 2.2 (Weakly attribute-hiding). We say an IPE scheme Π is
weakly attribute-hiding against chosen-plaintext attacks in selective attribute set-
ting, if for all ppt adversaries A engaging in experiment ExptIPEA (1λ), we have

AdvA(1λ) ≤ negl(λ).

2.2 LWE and Sampling Algorithms over Lattices

Learning with Errors. The LWE problem was introduced by Regev [22], the
works of [22] show that the LWE assumption is as hard as (quantum) solving
GapSVP and SIVP under various parameter regimes.

Definition 2.3 (LWE). For an integer q = q(n) ≥ 2, and an error distribution
χ = χ(n) over Zq, the Learning With Errors problem LWEn,m,q,χ is to distin-
guish between the following pairs of distributions (e.g. as given by a sampling
oracle O ∈ {Os ,O$}):

{A, sTA + xT} and {A,u}

where A $← Z
n×m
q , s

$← Z
n
q , u

$← Z
m
q , and x

$← χm.

Two-Sided Trapdoors and Sampling Algorithms. We will use the follow-
ing algorithms to sample short vectors from specified lattices.
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Lemma 2.4 [5,14]. Let q, n,m be positive integers with q ≥ 2 and sufficiently
large m = Ω(n log q). There exists a ppt algorithm TrapGen(q, n,m) that with
overwhelming probability outputs a pair (A ∈ Z

n×m
q ,TA ∈ Z

m×m) such that A
is statistically close to uniform in Z

n×m
q and TA is a basis for Λ⊥

q (A) satisfying

||TA|| ≤ O(n log q) and ||T̃A|| ≤ O(
√

n log q)

except with negl(n) probability.

Lemma 2.5 [1,12,14]. Let q > 2,m > n. There are two sampling algorithms
as follows:

– There is a ppt algorithm SampleLeft(A,B,TA,u, s), taking as input: (1)
a rank-n matrix A ∈ Z

n×m
q , and any matrix B ∈ Z

n×m1
q , (2) a “short”

basis TA for lattice Λ⊥
q (A), a vector u ∈ Z

n
q , (3) a Gaussian parameter

s > ||T̃A|| · ω(
√

log(m + m1)). Then outputs a vector r ∈ Z
m+m1 distributed

statistically close to DΛu
q (F),s where F := [A|B].

– There is a ppt algorithm SampleRight(A,B,R,TB,u, s), taking as input: (1)
a matrix A ∈ Z

n×m
q , and a rank-n matrix B ∈ Z

n×m
q , a matrix R ∈ Z

m×m
q ,

where sR := ||R|| = supx:||x||=1 ||Rx||, (2) a “short” basis TB for lattice

Λ⊥
q (B), a vector u ∈ Z

n
q , (3) a Gaussian parameter s > ||T̃B||·sR ·ω(

√
log m).

Then outputs a vector r ∈ Z
2m distributed statistically close to DΛu

q (F),s where
F := (A|AR + B).

Gadget Matrix. We now recall the gadget matrix [4,20], and the extended
gadget matrix technique appeared in [6], that are important to our construction.

Definition 2.6. Let m = n · �log q, and define the gadget matrix

Gn,2,m = g ⊗ In ∈ Z
n×m
q

where vector g = (1, 2, 4, . . . , 2�log q�) ∈ Z
�log q	
q , and ⊗ denotes tenser product.

We will also refer to this gadget matrix as “powers-of-two” matrix. We define the
inverse function G−1

n,2,m : Z
n×m
q → {0, 1}m×m which expands each entry a ∈ Zq

of the input matrix into a column of size �log q consisting of the bits of binary
representations. We have the property that for any matrix A ∈ Zn×m

q , it holds
that Gn,2,m · G−1

n,2,m(A) = A.

As mentioned by [20] and explicitly described in [6], the results for Gn,2,m and
its trapdoor can be extended to other integer powers or mixed-integer products.
In this direction, we give a generalized notation for gadget matrices as follows:

3 Our Construction

In this section, we describe our compact IPE construction. Before diving into
the details, we first revisit a novel encoding method implicitly employed in
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adaptively secure IBE setting in [6]. Consider the vector space Z
d
q . For vector

v = (v1, . . . , vd) ∈ Z
d
q , we define the following encoding algorithm which maps a

d-dimensional vector to an n × m matrix.

encode(v) = Ev =
[
v1In| · · · |vdIn

] · Gdn,�,m (1)

Similarly, we also define the encoding for an integer a ∈ Zq as: encode(a) = Ea =
aGn,2,m. The above encoding supports the vector space operations naturally, and
our compact IPE construction relies on this property.

3.1 IPE Construction Supporting log(λ)-Length Attributes

We describe our IPE scheme that each secret key is associated with a predicate
vector v ∈ Z

d
q (for some fixed d = log λ), and each ciphertext will be associated

with an attribute vector w ∈ Z
d
q . Decryption succeeds if and only if 〈v,w〉 =

0 mod q. We further extend our IPE construction supporting d = poly(λ)-length
vectors in Sect. 3.3. The description of Π = (Setup,KeyGen,Enc,Dec) is as
follows:

– Setup(1λ, 1d): On input the security parameter λ and length parameter d, the
setup algorithm first sets the parameters (q, n,m, s) as below. We assume the
parameters (q, n,m, s) are implicitly included in both pp and msk. Then it
generates a random matrix A ∈ Z

n×m
q along with its trapdoor TA ∈ Z

m×m
q ,

using (A,TA) ← TrapGen(q, n,m). Next sample a random matrix B ∈ Z
n×m
q

and a random vector u ∈ Z
n
q . Output the public parameter pp and master

secret key msk as

pp = (A,B,u), msk = (pp,TA)

– KeyGen(msk,v): On input the master secret key msk and predictor vector
v = (v1, . . . , vd) ∈ Z

d
q , the key generation algorithm first sets matrix Bv as

Bv = B · G−1
dn,�,m

(
⎡

⎢
⎣

v1In

...
vdIn

⎤

⎥
⎦ · Gn,2,m

)

Then sample a low-norm vector rv ∈ Z
2m using algorithm SampleLeft(A,Bv ,

u, s), such that [A|Bv ] · rv = u mod q. Output secret key skv = rv .
– Enc(pp,w, μ): On input the public parameter pp, an attribute vector w =

(w1, . . . , wd) ∈ Z
d
q and a message μ ∈ {0, 1}, the encryption algorithm first

chooses a random vector s ∈ Z
n
q and a random matrix R ∈ {−1, 1}m×m.

Then encode the attribute vector w as in Eq. (1)

Ew =
[
w1In| · · · |wdIn

] · Gdn,�,m

Let the ciphertext ctw = (c0, c1, c2) ∈ Z
2m+1
q be

c0 = sTA + eT
0 , c1 = sT(B + Ew ) + eT

0 R, c2 = sTu + e1 + �q/2μ
where errors e0 ← DZm,s, e1 ← DZ,s.
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– Dec(skv , ctw ): On input the secret key skv = rv and ciphertext ctw =
(c0, c1, c2), if 〈v,w〉 �= 0 mod q, then output ⊥. Otherwise, first compute

c′
1 = c1 · G−1

dn,�,m

(
⎡

⎢
⎣

v1In

...
vdIn

⎤

⎥
⎦ · Gn,2,m

)

then output Round(c2 − 〈(c0, c′
1), rv 〉).

Lemma 3.1. The IPE scheme Π described above is correct (c.f. Definition 2.1).

Proof. When the predicate vector v and attribute vector w satisfies 〈v,w〉 =
0 mod q, it holds that c′

1 = sTBv + e′
0. Therefore, during decryption, we have

μ′ = Round

(

�q/2μ + e1 − 〈(e0,e
′
0), rv 〉

︸ ︷︷ ︸
small

)

= μ ∈ {0, 1}

The third equation follows if (e1 − 〈(e0,e
′
0), rv 〉) is indeed small, which holds

w.h.p. by setting the parameters appropriately below. ��

Parameter Selection. To support d = log(λ)-length predicate/attribute vec-
tors, we set the system parameters according to Table 2, where ε > 0 is an
arbitrarily small constant.

Table 2. log(λ)-length IPE Parameters Setting

Parameters Description Setting

λ Security parameter

n Lattice row dimension λ

m Lattice column dimension n1+ε

q Modulus n3+εm

s Sampling and error width n1+ε

� Integer-base parameter n

These values are chosen in order to satisfy the following constraints:

– To ensure correctness, we require |e1−〈(e0,e
′
0), rv 〉| < q/4; Let rv = (r1, r2),

here we can bound the dominating term:

|e′T
0 r2| ≤ ||e′T

0 || · ||r2|| ≈ s
√

md� log� q · s
√

m = s2mn1+ε < q/4

– For SampleLeft, we know ||T̃A|| = O(
√

n log(q)), thus this requires that the
sampling width s satisfies s >

√
n log(q) · ω(

√
log(m)). For SampleRight,

we need s > ||T̃Gn,2,m || · ||R||ω(
√

log m) = n1+εω(
√

log m). To apply Regev’s
reduction, we need s >

√
nω(log(n)) (s here is an absolute value, not a ratio).

Therefore, we need s > n1+ε

– To apply the Leftover Hash Lemma, we need m ≥ (n + 1) log(q) + ω(log(n)).
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3.2 Security Proof

In this part, we show the weakly attribute-hiding property of our IPE con-
struction. We adapt the simulation technique in [2] by plugin the encoding
of vectors. Intuitively, to prove the theorem we define a sequences of hybrids
against adversary A in the weak attribute-hiding experiment. The adversary
A outputs two attribute vectors w0 and w1 at the beginning of each game,
and at some point outputs two messages μ0, μ1. The first and last games cor-
respond to real security game with challenge ciphertexts Enc(pp,w0, μ0) and
Enc(pp,w1, μ1) respectively. In the intermediate games we use the “alterna-
tive” simulation algorithms (Sim.Setup,Sim.KeyGen,Sim.Enc). During the course
of the game the adversary can only request keys for predicate vector vi such
that 〈vi,w0〉 �= 0 and 〈vi,w1〉 �= 0. We first define the simulation algorithms
(Sim.Setup,Sim.KeyGen,Sim.Enc) in the following:

– Sim.Setup(1λ, 1d,w∗): On input the security parameter λ, the length param-
eter d, and an attribute vector w∗ ∈ Z

d
q , the simulation setup algorithm first

chooses a random matrix A ← Z
n×m
q and a random vector u ← Z

n
q . Then

set matrix

B = AR∗ − Ew∗ , Ew∗ =
[
w∗

1In| · · · |w∗
dIn

] · Gdn,�,m

where matrix R∗ is chosen randomly from {−1, 1}m×m. Output pp =
(A,B,u) and msk = R∗.

– Sim.KeyGen(msk,v): On input the master secret key msk and a vector v ∈ Z
d
q ,

the simulation key generation algorithm sets matrix Rv and Bv as

Rv =

(
⎡

⎢
⎣

v1In

...
vdIn

⎤

⎥
⎦ · Gn,2,m

)

, Bv = B · G−1
dn,�,m(Rv )

Then sample a low-norm vector rv ∈ Z
2m using algorithm

rv ← SampleRight(A, 〈v,w∗〉Gn,2,m,R∗G−1
dn,�,m(Rv ),TGn,2,mu, s)

such that [A|Bv ] · rv = u mod q. Output secret key skv = rv .
– Sim.Enc(pp,w∗, μ): The simulation encryption algorithm is the same as the

counterpart in the scheme, except the matrix R∗ is used in generating the
ciphertext instead of sampling a random matrix R ∈ {−1, 1}m×m.

Due to the space limit, we include proof of the following theorem in full version.

Theorem 3.2. Assuming the hardness of (n, q, χ)-LWE assumption, the IPE
scheme described above is weakly attribute-hiding (c.f. Definition 2.2).

3.3 IPE Construction Supporting poly(λ)-length Vectors

We also extend our IPE construction to support t = poly(λ)-length vectors,
which means the predicate and attribute vector are chosen in vector space Z

t
q.
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Intuitively speaking, our construction described below can be regarded as a
t′ = �t/d “parallel repetition” version of IPE construction for d = log(λ)-length
vectors. In particular, we encode every log(λ) part of the attribute vector v, and
then concatenate these encoding together as the encoding of v. Due to space
limit, we include the detailed scheme and proof in the full version.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H) IBE in the standard model.
In: Gilbert [16], pp. 553–572 (2010)

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press, May 1996

4. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2010)

6. Apon, D., Fan, X., Liu, F.-H,: Vector encoding over lattices and its applications.
Cryptology ePrint Archive, Report 2017/455 (2017). http://eprint.iacr.org/2017/
455

7. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society Press, May 2007

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 30

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert [16], pp. 523–552 (2010)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-662-44371-2_17
http://eprint.iacr.org/2017/455
http://eprint.iacr.org/2017/455
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29


Compact Inner Product Encryption from LWE 153

15. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

16. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5

17. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November
2006. Available as Cryptology ePrint Archive Report 2006/309

19. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

20. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

21. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

23. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

24. Xagawa, K.: Improved (hierarchical) inner-product encryption from lattices. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 235–252.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 15

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-13190-5
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
http://eprint.iacr.org/2010/556
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-36362-7_15

	Compact Inner Product Encryption from LWE
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Inner Product Encryption
	2.2 LWE and Sampling Algorithms over Lattices

	3 Our Construction
	3.1 IPE Construction Supporting log()-Length Attributes
	3.2 Security Proof
	3.3 IPE Construction Supporting poly()-length Vectors

	References




