Skip to main content

Future Directions in Reconstructive and Regenerative Surgery

  • Chapter
  • First Online:
Gene Therapy in Reconstructive and Regenerative Surgery
  • 274 Accesses

Abstract

Over the last 5 years, major biomedical, technological, and manufacturing advances have helped reshape the therapeutic potential of gene therapies and facilitate their translation to clinical care. This chapter aims to provide brief insights on some of the innovations that are impacting the field, the CRISPR/Cas9 system and the therapeutic use of micro-RNAs are worth mentioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McNutt M. Breakthrough to genome editing. Science. 2015;350(6267):1445. https://doi.org/10.1126/science.aae0479.

    Article  PubMed  CAS  Google Scholar 

  2. Pineda M, Moghadam F, Ebrahimkhani MR, Kiani S. Engineered CRISPR systems for next generation gene therapies. ACS Synth Biol. 2017;6(9):1614–26. https://doi.org/10.1021/acssynbio.7b00011.

    Article  PubMed  CAS  Google Scholar 

  3. Wang HX, Li M, Lee CM, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev. 2017;117(15):9874–906. https://doi.org/10.1021/acs.chemrev.6b00799.

    Article  PubMed  CAS  Google Scholar 

  4. Puga Yung GL, Rieben R, Bühler L, Schuurman H-J, Seebach J. Xenotransplantation: where do we stand in 2016? Swiss Med Wkly. 2017;147(506):w14403. https://doi.org/10.4414/smw.2017.14403.

    Article  PubMed  Google Scholar 

  5. Feng W, Dai Y, Mou L, Cooper D, Shi D, Cai Z. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci. 2015;16(3):6545–56. https://doi.org/10.3390/ijms16036545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Butler JR, Wang Z-Y, Martens GR, et al. Modified glycan models of pig-to-human xenotransplantation do not enhance the human-anti-pig T cell response. Transpl Immunol. 2016;35:47–51. https://doi.org/10.1016/j.trim.2016.02.001.

    Article  PubMed  CAS  Google Scholar 

  7. Duncan KM, Mukherjee K, Cornell RA, Liao EC. Zebrafish models of orofacial clefts. Dev Dyn. 2017;246(11):897–914. https://doi.org/10.1002/dvdy.24566.

    Article  PubMed  CAS  Google Scholar 

  8. Hainzl S, Peking P, Kocher T, et al. COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Mol Ther. 2017;25(11):2573–84. https://doi.org/10.1016/j.ymthe.2017.07.005.

    Article  PubMed  CAS  Google Scholar 

  9. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64. https://doi.org/10.1016/j.addr.2017.08.001.

    Article  PubMed  CAS  Google Scholar 

  10. Meng Z, Zhou D, Gao Y, Zeng M, Wang W. miRNA delivery for skin wound healing. Adv Drug Deliv Rev. 2017. https://doi.org/10.1016/j.addr.2017.12.011.

  11. Santulli G. microRNA: medical evidence, Advances in experimental medicine and biology, vol. 888. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-22671-2.

    Book  Google Scholar 

  12. Wu YF, Mao WF, Zhou YL, Wang XT, Liu PY, Tang JB. Adeno-associated virus-2-mediated TGF-β1 microRNA transfection inhibits adhesion formation after digital flexor tendon injury. Gene Ther. 2016;23(2):167–75. https://doi.org/10.1038/gt.2015.97.

    Article  PubMed  CAS  Google Scholar 

  13. Icli B, Nabzdyk CS, Lujan-Hernandez J, et al. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol. 2016;91:151–9. https://doi.org/10.1016/j.yjmcc.2016.01.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chang K-P, Lee H-C, Huang S-H, Lee S-S, Lai C-S, Lin S-D. MicroRNA signatures in ischemia-reperfusion injury. Ann Plast Surg. 2012;69(6):668–71. https://doi.org/10.1097/SAP.0b013e3182742c45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Giatsidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giatsidis, G. (2018). Future Directions in Reconstructive and Regenerative Surgery. In: Giatsidis, G. (eds) Gene Therapy in Reconstructive and Regenerative Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-78957-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78957-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78956-9

  • Online ISBN: 978-3-319-78957-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics