Skip to main content

Effects of External Voltage in the Dynamics of Pancreatic β-Cells: Implications for the Treatment of Diabetes

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

The influence of exposure to electric and magnetic fields in pancreatic islets are still scarce and controversial, and it is difficult to conduct a comparison of existing studies due to the different research methods employed. Here, computational simulations were used to study the burst patterns in pancreatic beta cell exposure to constant voltage pulses. Results show that burst patterns in pancreatic beta cells are dependent on the applied voltage and that some voltages may even inhibit this phenomenon. There are critical voltages, such as 2.16 mV, in which the burst change from a medium oscillation to a slow oscillation phase or 3.5 mV that induces transition in the burst from slow to fast oscillation phase. Voltage pulse higher than 3.5 mV leads to the extinction of bursts and, therefore, inhibits the process of insulin secretion. These results are reforced by phase plane analysis.

Highlights

• Computational simulations were used to study the pattern of the burst in pancreatic beta cells in response to constant voltage pulses.

• Stimulation with low amplitude voltage pulses leads to changes in the pattern of the burst in pancreatic beta cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedersen, M.G.: Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in β-cells: considerations in favor of metabolically driven oscillations. J. Theor. Biol. 248, 391–400 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bertram, R., Rhoads, J., Cimbora, W.P.: A phantom bursting mechanism for episodic bursting. Bull. Math. Biol. 70, 1979–1993 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertram, R., Previte, J., Sherman, A., Kinard, T.A., Satin, L.S.: The phantom burster model for pancreatic beta-cells. Biophys. J. 79, 2880–2892 (2000)

    Article  Google Scholar 

  4. D’Aleo, V., Mancarella, R., Del Guerra, S., Boggi, U., Filipponi, F., Marchetti, P., Lupi, R.: Direct effects of rapid-acting insulin analogues on insulin signaling in human pancreatic islets in vitro. Diabetes Metab. 37, 324–329 (2011)

    Article  Google Scholar 

  5. Ashcroft, F.M., Rorsman, P.: Diabetes mellitus and the β cell: the last ten years. Cell 148, 1160–1171 (2012)

    Article  Google Scholar 

  6. Colli, M.L., Moore, F., Gurzov, E.N., Ortis, F., Eizirik, D.L.: MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum. Mol. Genet. 19, 135–146 (2010)

    Article  Google Scholar 

  7. Rorsman, P., Eliasson, L., Kanno, T., Zhang, Q., Gopel, S.: Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Prog. Biophys. Mol. Biol. 107, 224–235 (2011)

    Article  Google Scholar 

  8. Gao, J., Zhong, X., Ding, Y., Bai, T., Wang, H., Wu, H., Liu, Y., Yang, J., Zhang, Y.: Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells. Eur. J. Pharmacol. 777, 41–48 (2016)

    Article  Google Scholar 

  9. Zhao, Y., Shi, K., Su, X., Xie, L., Yan, Y.: Microcystin-LR induces dysfunction of insulin secretion in rat insulinoma (INS-1) cells: Implications for diabetes mellitus. J. Hazard. Mater. 314, 11–21 (2016)

    Article  Google Scholar 

  10. Fridlyand, L.E., Tamarina, N., Philipson, L.H.: Bursting and calcium oscillations in pancreatic beta-cells: specific pacemakers for specific mechanisms. Am. J. Physiol. Endocrinol. Metab. 299, E517–E532 (2010)

    Article  Google Scholar 

  11. Sherman, A.: Lessons from models of pancreatic beta cells for engineering glucose-sensing cells. Math. Biosci. 227, 12–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Félix-Martínez, G.J., Godínez-Fernández, J.R.: Modeling Ca2+ currents and buffered diffusion of Ca2+ in human β-cells during voltage clamp experiments. Math. Biosci. 270, 66–80 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Riz, M., Braun, M., Pedersen, M.G.: Mathematical modeling of heterogeneous electrophysiological responses in human β-cells. PLoS Comput. Biol. 10, e1003389 (2014)

    Article  Google Scholar 

  14. Benninger, R.K.P., Piston, D.W.: Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol. Metab. 25, 399–406 (2014)

    Article  Google Scholar 

  15. Neves, G.F., Silva, J.R.F., Moraes, R.B., Fernandes, T.S., Tenorio, B.M., Nogueira, R.A.: 60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis. Acta. Biotheor. 62, 133–143 (2014)

    Article  Google Scholar 

  16. Bertram, R., Sherman, A., Satin, L.S.: Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. In: Islam, M. (ed.) The Islets of Langerhans, vol. 654, pp. 261–279. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3271-3_12

    Chapter  Google Scholar 

  17. Grassi, C., D’Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A., Azzena, G.B.: Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35, 307–315 (2004)

    Article  Google Scholar 

  18. Laitl-Kobierska, A., Cieslar, G., Sieron, A., Grzybek, H.: Influence of alternating extremely low frequency ELF magnetic field on structure and function of pancreas in rats. Bioelectromagnetics. 23, 49–58 (2002)

    Article  Google Scholar 

  19. Sakurai, T., Satake, A., Sumi, S., Inoue, K., Miyakoshi, J.: An extremely low frequency magnetic field attenuates insulin secretion from the insulinoma cell line. RIN-m. Bioelectromagnetics 25, 160–166 (2004)

    Article  Google Scholar 

  20. Jolley, W.B., Hinshaw, D.B., Knierim, K., Hinshaw, D.B.: Magnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics 4, 103–106 (1983)

    Article  Google Scholar 

  21. Sheik Abdulazeez, S.: Diabetes treatment: a rapid review of the current and future scope of stem cell research. Saudi Pharm. J. 23, 333–340 (2013)

    Article  Google Scholar 

  22. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  23. Cohen S.D., Hindmarsh A.C.: CVODE, a stiff/nonstiff ODE solver in C. https://computation.llnl.gov/casc/nsde/pubs/u121014.pdf. Accessed 12 May 2017

  24. Watts, M., Tabak, J., Zimliki, C., Sherman, A., Bertram, R.: Slow variable dominance and phase resetting in phantom bursting. J. Theor. Biol. 276, 218–228 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romildo Albuquerque Nogueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, R.E.R., da Silva, J.R.F., Albuquerque Nogueira, R. (2018). Effects of External Voltage in the Dynamics of Pancreatic β-Cells: Implications for the Treatment of Diabetes. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics