Skip to main content

Improving Metagenomic Assemblies Through Data Partitioning: A GC Content Approach

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

Assembling metagenomic data sequenced by NGS platforms poses significant computational challenges, especially due to large volumes of data, sequencing errors, and variations in size, complexity, diversity and abundance of organisms present in a given metagenome. To overcome these problems, this work proposes an open-source, bioinformatic tool called GCSplit, which partitions metagenomic sequences into subsets using a computationally inexpensive metric: the GC content. Experiments performed on real data show that preprocessing short reads with GCSplit prior to assembly reduces memory consumption and generates higher quality results, such as an increase in the size of the largest contig and N50 metric, while both the L50 value and the total number of contigs produced in the assembly were reduced. GCSplit is available at https://github.com/mirand863/gcsplit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel, T.M., Simonet, P., Jansson, J.K., et al.: TerraGenome: a consortium for the sequencing of a soil metagenome. Nat. Rev. Microbiol. 7, 252 (2009)

    Article  Google Scholar 

  2. Venter, J.C., Remington, K., Heidelberg, J.F., et al.: Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004)

    Article  Google Scholar 

  3. Qin, J., Li, R., Raes, J., et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010)

    Article  Google Scholar 

  4. Turnbaugh, P.J., Ley, R.E., Hamady, M., et al.: The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449, 804–810 (2007)

    Article  Google Scholar 

  5. Namiki, T., Hachiya, T., Tanaka, H., et al.: MetaVelvet: an extension of Velvet assembler to De Novo metagenome assembly from short sequence reads. Nucleic Acids Res. 40, e155 (2012)

    Article  Google Scholar 

  6. Rodrigue, S., Materna, A.C., Timberlake, S., et al.: Unlocking short read sequencing for metagenomics. PLoS ONE 5, e11840 (2010)

    Article  Google Scholar 

  7. Nielsen, H.B., Almeida, M., Juncker, A.S., et al.: Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014)

    Article  Google Scholar 

  8. Wojcieszek, M., Pawełkowicz, M., Nowak, R., et al.: Genomes correction and assembling: present methods and tools. In: SPIE Proceedings, vol. 9290, p. 92901X (2014)

    Google Scholar 

  9. Charuvaka, A., Rangwala, H.: Evaluation of short read metagenomic assembly. BMC Genom. 12, S8 (2011)

    Article  Google Scholar 

  10. Rasheed, Z., Rangwala, H.: Mc-MinH: metagenome clustering using minwise based hashing. In: SIAM International Conference in Data Mining, pp. 677–685 (2013)

    Google Scholar 

  11. Howe, A.C., Jansson, J.K., Malfatti, S.A., et al.: Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl. Acad. Sci. 111, 4904–4909 (2014)

    Article  Google Scholar 

  12. Nurk, S., Meleshko, D., Korobeynikov, A., et al.: metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017)

    Article  Google Scholar 

  13. Brown, C.T., Howe, A., Zhang, Q., et al.: A reference-free algorithm for computational normalization of shotgun sequencing data. arXiv:1203.4802 (2012)

  14. Haas, B.J., Papanicolaou, A., Yassour, M., et al.: De Novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013)

    Article  Google Scholar 

  15. McCorrison, J.M., Venepally, P., Singh, I., et al.: NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly. BMC bioinform. 15, 357 (2014)

    Article  Google Scholar 

  16. Durai, D.A., Schulz, M.H.: In-silico read normalization using set multi-cover optimization. bioRxiv:133579 (2017)

  17. Pell, J., Hintze, A., Canino-Koning, R., et al.: Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. Proc. Natl. Acad. Sci. 109, 13272–13277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crusoe, M.R., Alameldin, H.F., Awad, S., et al.: The khmer software package: enabling efficient nucleotide sequence analysis. F1000Research 4, 900 (2015)

    Google Scholar 

  19. Rengasamy, V., Medvedev, P., Madduri, K.: Parallel and memory-efficient preprocessing for metagenome assembly. In: IPDPSW, pp. 283–292 (2017)

    Google Scholar 

  20. Cleary, B., Brito, I.L., Huang, K., et al.: Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat. Biotechnol. 33, 1053–1060 (2015)

    Article  Google Scholar 

  21. Melsted, P., Halldórsson, B.V.: KmerStream: streaming algorithms for k-mer abundance estimation. Bioinformatics 30, 3541–3547 (2014)

    Article  Google Scholar 

  22. Bankevich, A., Nurk, S., Antipov, D., et al.: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012)

    Article  MathSciNet  Google Scholar 

  23. Stamps, B.W., Corsetti, F.A., Spear, J.R., et al.: Draft genome of a novel Chlorobi member assembled by tetranucleotide binning of a hot spring metagenome. Genome Announc. 2, e00897–e00914 (2014)

    Google Scholar 

  24. Ibarbalz, F.M., Orellana, E., Figuerola, E.L., et al.: Shotgun metagenomic profiles have a high capacity to discriminate samples of activated sludge according to wastewater type. Appl. Environ. Microbiol. 82, 5186–5196 (2016)

    Article  Google Scholar 

  25. Gurevich, A., Saveliev, V., Vyahhi, N., et al.: QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported in part by CNPq under grant numbers 421528/2016–8 and 304711/2015–2. The authors would also like to thank CAPES for granting scholarships. Datasets processed in Sagarana HPC cluster, CPAD–ICB–UFMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miranda, F., Batista, C., Silva, A., Morais, J., Neto, N., Ramos, R. (2018). Improving Metagenomic Assemblies Through Data Partitioning: A GC Content Approach. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics