Skip to main content

Applications of KPFM-Based Approaches for Surface Potential and Electrochemical Measurements in Liquid

  • Chapter
  • First Online:
Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

Kelvin probe force microscopy (KPFM) has been widely used to map nanoscale surface potentials of materials in ambient and ultra-high vacuum environments. However, to study and ultimately understand charge-related processes, e.g., in biological systems or to further improve energy storage devices such as electrochemical batteries, nanoscale surface potential measurements in liquid environments are required. Here, we describe the various implementations of KPFM-based approaches for measuring surface potentials in liquid environments. We provide practical guidelines for surface potential measurements and describe what other information can be obtained. Finally, we discuss potential applications and limitations of existing approaches and present possible solutions for the successful implementation of liquid KPFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Li, G.A. Somorjai, Nano Lett. 10, 2289 (2010)

    Article  ADS  Google Scholar 

  2. G.A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, New York, NY, 2010)

    Google Scholar 

  3. F. Mansfeld, J. Appl. Electrochem. 25, 187 (1995)

    Google Scholar 

  4. H. Bhni, T. Suter, A. Schreyer, Electrochim. Acta 40, 1361 (1995)

    Google Scholar 

  5. J.R. Miller, P. Simon, Science (80) 321, 651 (2008)

    Google Scholar 

  6. D.S. Silvester, Analyst 136, 4871 (2011)

    Article  ADS  Google Scholar 

  7. T.G. Drummond, T.G. Drummond, M.G. Hill, M.G. Hill, J.K. Barton, J.K. Barton, Nat. Biotechnol. 21, 1192 (2003)

    Article  Google Scholar 

  8. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003)

    Article  ADS  Google Scholar 

  9. H.A.O. Hill, Coord. Chem. Rev. 151, 115 (1996)

    Article  Google Scholar 

  10. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  11. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  ADS  Google Scholar 

  12. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  Google Scholar 

  13. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407, 496 (2000)

    Article  ADS  Google Scholar 

  14. D.E. Williams, C. Westcott, M. Fleischmann, J. Electrochem. Soc. 132, 1796 (1985)

    Article  Google Scholar 

  15. M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195, 7904 (2010)

    Article  ADS  Google Scholar 

  16. P. Balaya, Energy Environ. Sci. 1, 645 (2008)

    Article  Google Scholar 

  17. J.Y. Son, K. Kyhm, J.H. Cho, Appl. Phys. Lett. 89, 92907 (2006)

    Article  Google Scholar 

  18. S.V. Kalinin, D.A. Bonnell, Phys. Rev. B 63, 125411 (2001)

    Article  ADS  Google Scholar 

  19. S.A.L. Weber, H.-J.J. Butt, R. Berger, Scanning Probe Microscopic Nanoscience Nanotechnology 3 (Springer, Berlin, 2013), pp. 551–573

    Google Scholar 

  20. E. Drolle, K. Hammond, W.F.D. Bennett, E. Lyman, M. Karttunen, Z. Leonenko, arXiv 1607.00057 (2016)

    Google Scholar 

  21. F. Hane, B. Moores, M. Amrein, Z. Leonenko, Ultramicroscopy 109, 968 (2009)

    Article  Google Scholar 

  22. Z. Leonenko, M. Rodenstein, J. Döhner, L.M. Eng, M. Amrein, Langmuir 22, 10135 (2006)

    Article  Google Scholar 

  23. C. Leung, D. Maradan, A. Kramer, S. Howorka, P. Mesquida, B.W. Hoogenboom, Appl. Phys. Lett. 97, 203703 (2010)

    Article  ADS  Google Scholar 

  24. A.K. Sinensky, A.M. Belcher, Nat. Nanotechnol. 2, 653 (2007)

    Article  ADS  Google Scholar 

  25. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)

    Article  ADS  Google Scholar 

  26. M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E Stat. Nonlinear, Soft Mat. Phys. 70, 1 (2004)

    Google Scholar 

  27. M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, New J. Phys. 11, 2 (2009)

    Article  Google Scholar 

  28. H. Helmholtz, Ann. Phys. Chem. 89, 211 (1853)

    Article  ADS  Google Scholar 

  29. G. Gouy, J. Phys. Theor. Appl. 9, 457 (1910)

    Article  Google Scholar 

  30. D.L. Chapman, Philos. Mag. Ser. 6(25), 475 (1913)

    Article  Google Scholar 

  31. M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 21506 (2004)

    Google Scholar 

  32. O.Z. Stern, Electrochemistry 30, 508 (1924)

    Google Scholar 

  33. H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH, 2006)

    Google Scholar 

  34. M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 21502 (2007)

    Article  ADS  Google Scholar 

  35. M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 21503 (2007)

    Article  ADS  Google Scholar 

  36. B.D. Storey, L.R. Edwards, M.S. Kilic, M.Z. Bazant, Phys. Rev. E 77, 36317 (2008)

    Article  ADS  Google Scholar 

  37. M.Z. Bazant, K. Thornton, A. Ajdari, 1 (2008)

    Google Scholar 

  38. L. Collins, S. Jesse, J.I. Kilpatrick, A. Tselev, O. Varenyk, M.B. Okatan, S.AL. Weber, A. Kumar, N. Balke, S.V Kalinin, B.J. Rodriguez, Nat. Commun. 5, 3871 (2014)

    Google Scholar 

  39. M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, New J. Phys. 11, 75016 (2009)

    Article  Google Scholar 

  40. I. Borukhov, D. Andelman, H. Orland, Electrochim. Acta 46, 221 (2000)

    Article  Google Scholar 

  41. A.H. Boschitsch, P.V. Danilov, J. Comput. Chem. 33, 1152 (2012)

    Article  Google Scholar 

  42. R. Borgani, D. Forchheimer, J. Bergqvist, P.-A. Thorén, O. Inganäs, D.B. Haviland, Appl. Phys. Lett. 105, 143113 (2014)

    Article  ADS  Google Scholar 

  43. L. Collins, A. Belianinov, S. Somnath, B.J. Rodriguez, N. Balke, S.V. Kalinin, S. Jesse, Nanotechnology 27, 105706 (2016)

    Article  ADS  Google Scholar 

  44. L. Collins, A. Belianinov, R. Proksch, T. Zuo, Y. Zhang, P.K. Liaw, S.V. Kalinin, S. Jesse, Appl. Phys. Lett. 108, 1 (2016)

    Article  Google Scholar 

  45. L. Collins, S. Jesse, J.I. Kilpatrick, A. Tselev, M.B. Okatan, S.V. Kalinin, B.J. Rodriguez, Beilstein J. Nanotechnol. 6, 201 (2015)

    Article  Google Scholar 

  46. S. Guo, S. V. Kalinin, S. Jesse, Appl. Phys. Lett. 100, (2012)

    Google Scholar 

  47. L. Collins, J.I. Kilpatrick, S. a L. Weber, A Tselev, I. V Vlassiouk, I.N. Ivanov, S. Jesse, S. V Kalinin, B.J. Rodriguez, Nanotechnology 24, 475702 (2013)

    Google Scholar 

  48. R. Borgani, D. Forchheimer, J. Bergqvist, P.-A. Thorén, O. Inganäs, D.B. Haviland, Appl. Phys. Lett. 105, 143113 (2014)

    Article  ADS  Google Scholar 

  49. R. Borgani, L.K.H. Pallon, M.S. Hedenqvist, U.W. Gedde, D.B. Haviland, Nano Lett. 16, 5934 (2016)

    Article  ADS  Google Scholar 

  50. W. Ducker, T. Senden, R. Pashley, Nature 353, 239 (1991)

    Article  ADS  Google Scholar 

  51. W.A. Ducker, T.J. Senden, R.M. Pashley, Langmuir 8, 1831 (1992)

    Article  Google Scholar 

  52. H.J. Butt, Biophys. J. 60, 777 (1991)

    Article  Google Scholar 

  53. H.J. Butt, Biophys. J. 60, 1438 (1991)

    Article  Google Scholar 

  54. V.G. Levadny, M.L. Belaya, D.A. Pink, M.H. Jericho, Biophys. J. 70, 1745 (1996)

    Article  Google Scholar 

  55. R. Raiteri, S. Martinoia, M. Grattarola, Biosensors 11, 1009 (1996)

    Article  Google Scholar 

  56. A.L. Weisenhorn, P. Maivald, H.J. Butt, P.K. Hansma, Phys. Rev. B 45, 11226 (1992)

    Article  ADS  Google Scholar 

  57. H.J. Butt, M. Jaschke, W. Ducker, Bioelectrochemistry Bioenerg. 38, 191 (1995)

    Article  Google Scholar 

  58. H. Butt, Biophys. J. 63, 578 (1992)

    Article  Google Scholar 

  59. R. Raiteri, M. Grattarola, H.-J. Butt, J. Phys. Chem. 100, 16700 (1996)

    Article  Google Scholar 

  60. A.C. Hillier, S. Kim, A.J. Bard, J. Phys. Chem. 100, 18808 (1996)

    Article  Google Scholar 

  61. C. Rotsch, M. Radmacher, Langmuir 13, 2825 (1997)

    Article  Google Scholar 

  62. W. Heinz, J. Hoh, Biophys. J. 76, 528 (1999)

    Article  Google Scholar 

  63. J. Sotres, A.M. Baró, Appl. Phys. Lett. 93, 103903 (2008)

    Article  ADS  Google Scholar 

  64. J. Sotres, A.M. Baró, Biophys. J. 98, 1995 (2010)

    Article  Google Scholar 

  65. C. Marlière, S. Dhahri, Nanoscale 7, 8843 (2015)

    Article  ADS  Google Scholar 

  66. D. Ebeling, D. van den Ende, F. Mugele, Nanotechnology 22, 305706 (2011)

    Article  Google Scholar 

  67. K. Umeda, K. Kobayashi, N. Oyabu, K. Matsushige, H. Yamada, Nanotechnology 26, 285103 (2015)

    Article  Google Scholar 

  68. T.J. Senden, C.J. Drummond, P. Kekicheff, Langmuir 10, 358 (1994)

    Article  Google Scholar 

  69. S. Manne, J.P. Cleveland, H.E. Gaub, G.D. Stucky, P.K. Hansma, Langmuir 10, 4409 (1994)

    Article  Google Scholar 

  70. D.J. Müller, A. Engel, Biophys. J. 73, 1633 (1997)

    Article  Google Scholar 

  71. D.J. Müller, D. Fotiadis, S. Scheuring, S. a Müller, A. Engel, Biophys. J. 76, 1101 (1999)

    Google Scholar 

  72. A. Philippsen, W. Im, A. Engel, T. Schirmer, B. Roux, D.J. Müller, Biophys. J. 82, 1667 (2002)

    Article  Google Scholar 

  73. A.S. Johnson, C.L. Nehl, M.G. Mason, J.H. Hafner, Langmuir 19, 10007 (2003)

    Article  Google Scholar 

  74. Y. Yang, K.M. Mayer, J.H. Hafner, Biophys. J. 92, 1966 (2007)

    Article  Google Scholar 

  75. Y. Yang, K.M. Mayer, N.S. Wickremasinghe, J.H. Hafner, Biophys. J. 95, 5193 (2008)

    Article  Google Scholar 

  76. R. Raiteri, H.J. Butt, J. Phys. Chem. 99, 15728 (1995)

    Article  Google Scholar 

  77. A. Döppenschmidt, H.J. Butt, Colloids Surfaces A Physicochem. Eng. Asp. 149, 145 (1999)

    Article  Google Scholar 

  78. K. Hu, F.-R.F. Fan, A.J. Bard, A.C. Hillier, J. Phys. Chem. B 101, 8298 (1997)

    Article  Google Scholar 

  79. R. Raiteri, M. Preuss, M. Grattarola, H.J. Butt, Colloids Surfaces A Physicochem. Eng. Asp. 136, 191 (1998)

    Article  Google Scholar 

  80. B.P. Lynch, A.M. Hilton, C.H. Doerge, G.J. Simpson, Langmuir 21, 1436 (2005)

    Article  Google Scholar 

  81. A.M. Hilton, B.P. Lynch, G.J. Simpson, Anal. Chem. 77, 8008 (2005)

    Article  Google Scholar 

  82. B.P. Lynch, A.M. Hilton, G.J. Simpson, Biophys. J. 91, 2678 (2006)

    Article  Google Scholar 

  83. B.J. Rodriguez, S. Jesse, K. Seal, A.P. Baddorf, S.V. Kalinin, J. Appl. Phys. 103, 14306 (2008)

    Article  ADS  Google Scholar 

  84. B.J. Rodriguez, S. Jesse, A.P. Baddorf, S.V. Kalinin, Phys. Rev. Lett. 96, 237602 (2006)

    Article  ADS  Google Scholar 

  85. D. Denning, J. Guyonnet, B.J. Rodriguez, Int. Mater. Rev. 61, 46 (2016)

    Article  Google Scholar 

  86. B.J. Rodriguez, S. V. Kalinin, Springer Series Surface Science (Springer, 2012), pp. 243–287

    Google Scholar 

  87. B.J. Rodriguez, S. Jesse, A.P. Baddorf, S.H. Kim, S.V. Kalinin, Phys. Rev. Lett. 98, 247603 (2007)

    Article  ADS  Google Scholar 

  88. K.I. Umeda, N. Oyabu, K. Kobayashi, Y. Hirata, K. Matsushige, H. Yamada, Appl. Phys. Express 3, 20 (2010)

    Article  Google Scholar 

  89. K.I. Umeda, K. Kobayashi, N. Oyabu, Y. Hirata, K. Matsushige, H. Yamada, J. Appl. Phys. 113, (2013)

    Google Scholar 

  90. K.I. Umeda, K. Kobayashi, K. Matsushige, H. Yamada, Appl. Phys. Lett. 101, 123112 (2012)

    Article  ADS  Google Scholar 

  91. D.J. Marchand, E. Hsiao, S.H. Kim, Langmuir 29, 6762 (2013)

    Article  Google Scholar 

  92. C.J. Long, R.J. Cannara, Rev. Sci. Instrum. 86, (2015)

    Google Scholar 

  93. J. Zhang, D.M. Czajkowsky, Y. Shen, J. Sun, C. Fan, J. Hu, Z. Shao, Appl. Phys. Lett. 102, 73110 (2013)

    Article  Google Scholar 

  94. K.I. Umeda, K. Kobayashi, N. Oyabu, Y. Hirata, K. Matsushige, H. Yamada, J. Appl. Phys. 116, 134307 (2014)

    Article  ADS  Google Scholar 

  95. L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J.L. Carrascosa, G. Gomila, Nat. Mater. 11, 808 (2012)

    Article  ADS  Google Scholar 

  96. A. Cuervo, P.D. Dans, J.L. Carrascosa, M. Orozco, G. Gomila, L. Fumagalli, Proc. Natl. Acad. Sci. 111, E3624 (2014)

    Article  ADS  Google Scholar 

  97. A. Dols-Perez, G. Gramse, A. Calò, G. Gomila, L. Fumagalli, Nanoscale 7, 18327 (2015)

    Article  ADS  Google Scholar 

  98. D. Esteban-Ferrer, M.A. Edwards, L. Fumagalli, A. Ju??rez, and G. Gomila, ACS Nano 8, 9843 (2014)

    Google Scholar 

  99. M. Van Der Hofstadt, R. Fabregas, R. Millan-Solsona, A. Juarez, L. Fumagalli, G. Gomila, ACS Nano 10, 11327 (2016)

    Article  Google Scholar 

  100. G. Gomila, G. Gramse, L. Fumagalli, Nanotechnology 25, 255702 (2014)

    Article  Google Scholar 

  101. G. Gramse, M. Edwards, L. Fumagalli, G. Gomila, Nanotechnology 24, 415709 (2013)

    Google Scholar 

  102. G. Gramse, A. Dols-Perez, M.A. Edwards, L. Fumagalli, G. Gomila, Biophys. J. 104, 1257 (2013)

    Article  Google Scholar 

  103. T.L. Sounart, T.A. Michalske, K.R. Zavadil, J. Microelectromech. Syst. 14, 125 (2005)

    Article  Google Scholar 

  104. H.V. Panchawagh, T.L. Sounart, R.L. Mahajan, J. Microelectrom. Syst. 18, 1105 (2009)

    Article  Google Scholar 

  105. G. Gramse, M.A. Edwards, L. Fumagalli, G. Gomila, Appl. Phys. Lett. 101, 213108 (2012)

    Article  ADS  Google Scholar 

  106. G. Gramse, M.A. Edwards, L. Fumagalli, G. Gomila, Nanotechnology 24, 415709 (2013)

    Article  Google Scholar 

  107. T.L. Sounart, T.A. Michalske, Transducers 2003—12th International Conference Solid-State Sensors, Actuators Microsystems, Digitalized Technical Paper vol. 1, p. 615 (2003)

    Google Scholar 

  108. B. Kumar, S.R. Crittenden, Nanotechnology 24, 435701 (2013)

    Article  ADS  Google Scholar 

  109. T. Fort, R. Wells, Surf. Sci. 12, 46 (1968)

    Article  ADS  Google Scholar 

  110. S. Bastide, D. Gal, D.C. Kronik, S. Bastide, D. Gal, D. Cahen, 4032, (1999)

    Google Scholar 

  111. A.L. Domanski, E. Sengupta, K. Bley, M.B. Untch, S. A L. Weber, K. Landfester, C.K. Weiss, H.-J. Butt, R. Berger, Langmuir 28, 13892 (2012)

    Google Scholar 

  112. L. Collins, J. Kilpatrick, S. V. Kalinin, B.J. Rodriguez (2017)

    Google Scholar 

  113. Q. Guo, V. Singh, S.H. Behrens, Langmuir 26, 3203 (2010)

    Article  Google Scholar 

  114. C.E. Espinosa, Q. Guo, V. Singh, S.H. Behrens, Langmuir 26, 16941 (2010)

    Article  Google Scholar 

  115. Q. Guo, J. Lee, V. Singh, S.H. Behrens, J. Colloid Interface Sci. 392, 83 (2013)

    Article  ADS  Google Scholar 

  116. O. Takeuchi, Y. Ohrai, S. Yoshida, H. Shigekawa, Jpn. J. Appl. Phys. 46, 5626 (2007)

    Article  ADS  Google Scholar 

  117. K. Naritaka, A. Hitoshi, F. Takeshi, Rev. Sci. Instrum. 81, 123705 (4404)

    Google Scholar 

  118. N. Kobayashi, H. Asakawa, T. Fukuma, J. Appl. Phys. 110, 44315 (2011)

    Article  Google Scholar 

  119. L. Collins, J.I. Kilpatrick, I. V. Vlassiouk, A. Tselev, S.A.L. Weber, S. Jesse, S. V. Kalinin, B.J. Rodriguez, Appl. Phys. Lett. 104, (2014)

    Google Scholar 

  120. N. Kobayashi, H. Asakawa, T. Fukuma, Rev. Sci. Instrum. 83, 33709 (2012)

    Article  Google Scholar 

  121. K. Honbo, S. Ogata, T. Kitagawa, T. Okamoto, N. Kobayashi, I. Sugimoto, S. Shima, A. Fukunaga, C. Takatoh, T. Fukuma, ACS Nano 10, 2575 (2016)

    Article  Google Scholar 

  122. L. Collins, S. Jesse, J.I. Kilpatrick, A. Tselev, M.B. Okatan, S.V. Kalinin, B.J. Rodriguez, Beilstein J. Nanotechnol. 6, 201 (2015)

    Article  Google Scholar 

  123. D.C. Coffey, D.S. Ginger, Nat. Mater. 5, 735 (2006)

    Article  ADS  Google Scholar 

  124. J. Murawski, T. Graupner, P. Milde, R. Raupach, U. Zerweck-Trogisch, L.M. Eng, J. Appl. Phys. 118, 0 (2015)

    Google Scholar 

  125. J.L. Garrett, J.N. Munday, Nanotechnology 27, 245705 (2016)

    Article  ADS  Google Scholar 

  126. L. Collins, A. Belianinov, S. Somnath, N. Balke, S.V. Kalinin, S. Jesse, Sci. Rep. 6, 30557 (2016)

    Article  ADS  Google Scholar 

  127. L. Collins, A. Belianinov, R. Proksch, T. Zuo, Y. Zhang, P.K. Liaw, S.V. Kalinin, S. Jesse, Appl. Phys. Lett. 108, 1 (2016)

    Article  Google Scholar 

  128. L. Collins, M. Ahmadi, T. Wu, B. Hu, S.V. Kalinin, S. Jesse, ACS Nano 11, 8717 (2017)

    Google Scholar 

  129. B.J. Rodriguez, S. Jesse, K. Seal, A.P. Baddorf, S.V. Kalinin, P.D. Rack, Appl. Phys. Lett. 91, 93130 (2007)

    Article  Google Scholar 

  130. J.H. Noh, M. Nikiforov, S. V. Kalinin, A. A. Vertegel, P.D. Rack, Nanotechnology 21, 365302 (2010)

    Google Scholar 

  131. D. Ziegler, A. Klaassen, D. Bahri, D. Chmielewski, A. Nievergelt, F. Mugele, J.E. Sader, P.D. Ashby, in 2014 IEEE 27th International Conference of the Micro Electro Mechanical System (IEEE, 2014), pp. 128–131

    Google Scholar 

  132. S.V. Kalinin, E. Strelcov, A. Belianinov, S. Somnath, R.K. Vasudevan, E.J. Lingerfelt, R.K. Archibald, C. Chen, R. Proksch, N. Laanait, S. Jesse, ACS Nano 10, 9068 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

A portion of the research was conducted at and supported by the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (LC). BJR acknowledges support from Science Foundation Ireland (14/US/I3113) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 644175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan A.L. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collins, L., Weber, S.A., Rodriguez, B.J. (2018). Applications of KPFM-Based Approaches for Surface Potential and Electrochemical Measurements in Liquid. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_13

Download citation

Publish with us

Policies and ethics