Skip to main content

Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species

  • Chapter
  • First Online:
Type IV Secretion in Gram-Negative and Gram-Positive Bacteria

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 413))

Abstract

The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808. http://dx.doi.org/73/4/775 (PMID:19946141) ([pii] 10.1128/mmbr.00023-09)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Khedery B, Lundgren AM., Stuen S, Granquist EG, Munderloh UG, Nelson CM et al (2012) Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum. BMC Genomics 13:678. http://dx.doi.org/10.1186/1471-2164-13-678 (PMID:23190684)

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen MB, Pritt BS, Sloan LM, Paddock CD, Musham CK, Ramos JM et al (2014) First reported case of Ehrlichia ewingii involving human bone marrow. J Clin Microbiol 52:4102–4104. http://dx.doi.org/10.1128/JCM.01670-14 (PMID:25187638)

    Article  PubMed  PubMed Central  Google Scholar 

  • Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9(2):207–217. https://doi.org/10.1016/j.mib.2006.02.008

    Article  PubMed  CAS  Google Scholar 

  • Bakken JS, Dumler S (2008) Human granulocytic anaplasmosis. Infect Dis Clin North Am 22:433–448, viii (PMID:18755383)

    Article  PubMed  Google Scholar 

  • Bao W, Kumagai Y, Niu H, Yamaguchi M, Miura K, Rikihisa Y (2009) Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J Bacteriol 191:278–286 (PMID:18952796)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, et al (2013) The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14:675–682. http://dx.doi.org/10.1016/j.chom.2013.11.003 (PMID:24331465)

    Article  CAS  Google Scholar 

  • Barnewall RE, Rikihisa Y, Lee EH (1997) Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect Immun 65:1455–1461 (PMID:9119487)

    Google Scholar 

  • Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892 (PMID:9705327)

    Article  CAS  Google Scholar 

  • Bhamidipati PK, Kantarjian H, Cortes J, Cornelison AM, Jabbour E (2013) Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol 4:103–117. http://dx.doi.org/10.1177/2040620712468289 (PMID:23610618)

    Article  CAS  Google Scholar 

  • Borjesson DL, Kobayashi SD, Whitney AR, Voyich JM, Argue CM, Deleo FR (2005) Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J Immunol 174:6364–6372 (PMID:15879137)

    Article  CAS  PubMed  Google Scholar 

  • Buller RS, Arens M, Hmiel SP, Paddock CD, Sumner JW, Rikhisa Y et al. (1999) Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N Engl J Med 341:148–155 (PMID:10403852)

    Article  CAS  Google Scholar 

  • Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502 (PMID:12120256)

    Article  CAS  PubMed  Google Scholar 

  • Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E (2004) Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect Immun 72:4772–4783 (PMID:15271939)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caturegli P, Asanovich KM, Walls JJ, Bakken JS, Madigan JE, Popov VL, Dumler JS (2000) ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect Immun 68:5277–5283 (PMID:10948155)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SM, Dumler JS, Bakken JS, Walker DH (1994) Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol 32:589–595 (PMID:8195363)

    Google Scholar 

  • Cheng Z, Wang X, Rikihisa Y (2008) Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J Bacteriol 190:2096–2105 (PMID:18192398)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094 (PMID:9150199)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson JE, Anderson BE, Fishbein DB, Sanchez JL, Goldsmith CS, Wilson KH, Duntley CW (1991) Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. J Clin Microbiol 29:2741–2745 (PMID:1757543)

    Google Scholar 

  • DeLeo FR (2004) Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399–413 (PMID:15192322)

    Article  CAS  PubMed  Google Scholar 

  • Deretic V (2012) Autophagy: an emerging immunological paradigm. J Immunol 189:15–20. http://dx.doi.org/10.4049/jimmunol.1102108 (PMID:22723639)

    Article  CAS  PubMed  Google Scholar 

  • Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549. http://dx.doi.org/S1931-3128(09)00183-8 (PMID:19527881) ([pii] 10.1016/j.chom.2009.05.016)

    Article  CAS  Google Scholar 

  • Dou Z, Pan JA, Dbouk HA, Ballou LM, Deleon JL, Fan Y et al (2013) Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol Cell 50:29–42. http://dx.doi.org/10.1016/j.molcel.2013.01.022 (PMID:23434372)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042 (PMID:11287973)

    Article  CAS  Google Scholar 

  • Dumler JS, Sinclair SH, Pappas-Brown V, Shetty AC (2016) Genome-wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression. Front Cell Infect Microbiol 6:97. http://dx.doi.org/10.3389/fcimb.2016.00097 (PMID:27703927)

  • Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen J et al (2006) Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2:e21 (PMID:16482227)

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunphy PS, Luo T, McBride JW (2013) Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect 15:1005–1016. http://dx.doi.org/10.1016/j.micinf.2013.09.011 (PMID:24141087)

    Article  CAS  PubMed  Google Scholar 

  • Dunphy PS, Luo T, McBride JW (2014) Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 82:4154–4168. http://dx.doi.org/10.1128/IAI.01984-14 (PMID:25047847)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felek S, Huang H, Rikihisa Y (2003) Sequence and expression analysis of virB9 of the type IV secretion system of Ehrlichia canis strains in ticks, dogs, and cultured cells. Infect Immun 71:6063–6067 (PMID:14500531)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N, Morita E, Itoh T, Tanaka A, Nakaoka M, Osada Y et al (2013) Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J Cell Biol 203:115–128. http://dx.doi.org/10.1083/jcb.201304188 (PMID:24100292)

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Garcia JC, Rennoll-Bankert KE, Pelly S, Milstone AM, Dumler JS (2009) Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect Immun 77:2385–2391. http://dx.doi.org/IAI.00023-09 (PMID:19307214) ([pii] 10.1128/IAI.00023-09)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Rikihisa Y (2006) Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways. Cell Microbiol 8:1406–1416 (PMID:16922860)

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Rikihisa Y (2007a) Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J Bacteriol 189:7819–7828 (PMID:17766422)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Rikihisa Y (2007b) Surface-exposed proteins of Ehrlichia chaffeensis. Infect Immun 75:3833–3841. http://dx.doi.org/IAI.00188-07 (PMID:17517859) ([pii] 10.1128/iai.00188-07)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Yoshiie K, Kuribayashi F, Lin M, Rikihisa Y (2005) Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation. Cell Microbiol 7:29–38 (PMID:15617521)

    Article  CAS  Google Scholar 

  • Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, Setubal JC et al (2009) An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PloS One 4:e4833. http://dx.doi.org/10.1371/journal.pone.0004833 (PMID:19279686)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Brayton KA, Williams KP, Diaz MA, Brown WC, Azad AF. Sobral BW (2010) Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect Immun 78:1809–1823. http://dx.doi.org/IAI.01384-09 (PMID:20176788) ([pii] 10.1128/iai.01384-09)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Phan IQ, Scheib H, Subramanian S, Edwards TE, Lehman SS et al (2015) Structural insight into how bacteria prevent interference between multiple divergent type IV secretion systems. mBio 6:e01867–01815. http://dx.doi.org/10.1128/mBio.01867-15 (PMID:26646013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Phan IQ, Driscoll TP, Guillotte ML, Lehman SS, Rennoll-Bankert KE et al (2016) The Rickettsia type IV secretion system: unrealized complexity mired by gene family expansion. Pathog Dis 74. http://dx.doi.org/10.1093/femspd/ftw058 (PMID:27307105)

  • Goodman JL, Nelson C, Vitale B, Madigan JE, Dumler JS, Kurtti TJ, Munderloh UG (1996) Direct cultivation of the causative agent of human granulocytic ehrlichiosis. N Engl J Med 334:209–215 (PMID:8531996)

    Article  CAS  Google Scholar 

  • Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4. http://dx.doi.org/10.1128/microbiolspec.VMBF-0012-2015 (PMID:26999395)

  • Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107:455–471. https://doi.org/10.1111/mmi.13896

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766 (PMID:15607973)

    Article  CAS  PubMed  Google Scholar 

  • Holley AK, Dhar SK, Xu Y, St Clair DK (2012) Manganese superoxide dismutase: beyond life and death. Amino Acids 42:139–158. http://dx.doi.org/10.1007/s00726-010-0600-9 (PMID:20454814)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C (2010) ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterol 139:1630–1641, e1631–1632. http://dx.doi.org/10.1053/j.gastro.2010.07.006 (PMID:20637199)

    Article  CAS  Google Scholar 

  • Huang B, Hubber A, McDonough JA, Roy CR, Scidmore MA, Carlyon JA (2010a) The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell Microbiol 12:1292–1307. http://dx.doi.org/CMI1468 (PMID:20345488) ([pii] 10.1111/j.1462-5822.2010.01468.x)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Troese MJ, Howe D, Ye S, Sims JT, Heinzen RA et al (2010b) Anaplasma phagocytophilum APH_0032 is expressed late during infection and localizes to the pathogen-occupied vacuolar membrane. Microb Pathog 49:273–284. http://dx.doi.org/S0882-4010(10)00111-7 (PMID:20600793) ([pii] 10.1016/j.micpath.2010.06.009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283. http://dx.doi.org/10.1146/annurev-cellbio-100109-104034 (PMID:20929312)

    Article  CAS  PubMed  Google Scholar 

  • IJdo J, Carlson AC, Kennedy EL (2007) Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol 9:1284–1296 (PMID:17250594)

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372. http://dx.doi.org/E08-01-0080 (PMID:18843052) ([pii] 10.1091/mbc.e08-01-0080)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H et al (2013) A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 43:1333–1344. http://dx.doi.org/10.1002/eji.201242835 (PMID:23420491)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriakose JA, Miyashiro S, Luo T, Zhu B, McBride JW (2011) Ehrlichia chaffeensis transcriptome in mammalian and arthropod hosts reveals differential gene expression and post transcriptional regulation. PloS One 6:e24136. http://dx.doi.org/10.1371/journal.pone.0024136 (PMID:21915290) (PONE-D-11-09798 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nat 469:323–335. http://dx.doi.org/nature09782 (PMID:21248839) ([pii] 10.1038/nature09782)

  • Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH (1998) Mammalian bax triggers apoptotic changes in yeast. FEBS Lett 438:61–65. http://dx.doi.org/S0014-5793(98)01227-7 (PMID:9821959) [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Rikihisa Y (2003a) Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71:5324–5331 (PMID:12933880)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Rikihisa Y (2003b) Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell Microbiol 5:809–820

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Rikihisa Y (2007) Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes. Cell Microbiol 9:861–874 (PMID:17087735)

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Rikihisa Y (2015) Infection and release of obligatory intracellular pathogen Anaplasma require regulation of actin cytoskeleton dynamics by type IV secretion effector AnkA. In: Annual meeting of american society for rickettsiology, Olympic valley, CA, American Society for Rickettsiology, pp Abstract #72

    Google Scholar 

  • Lin M, Zhu MX, Rikihisa Y (2002) Rapid activation of protein tyrosine kinase and phospholipase C-g2 and increase in cytosolic free calcium are required by Ehrlichia chaffeensis for internalization and growth in THP-1 cells. Infect Immun 70:889–898 (PMID:11796624)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, den Dulk-Ras A, Hooykaas PJ, Rikihisa Y (2007) Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol 9, 2644–2657 (PMID:17587335)

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Daugherty SC, Parankush S, Kumar N, Cheng Z, Xiong Q et al (2013) Sequencing and comparison of genomes of Ehrlichia strains and transcriptome profiles in mammalian host and tick cells. In: ASM 113th general meeting, American Society for Microbiology, Denver, CO

    Google Scholar 

  • Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y (2011) Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis. Front Microbiol 2:24. https://doi.org/10.3389/fmicb.2011.00024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, Rikihisa Y (2016) Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy 12:2145–2166. http://dx.doi.org/10.1080/15548627.2016.1217369 (PMID:27541856)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind J, Backert S, Hoffmann R, Eichler J, Yamaoka Y, Perez-Perez GI, Torres J, Sticht H, Tegtmeyer N (2016) Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains. BMC Microbiol 16(1):201. https://doi.org/10.1186/s12866-016-0820-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H (2013) Roles of type IV secretion effector ECH0825 in Ehrlichia chaffeensis infection. In: Veterinary biosciences, The Ohio State University, Columbus, OH, p 154

    Google Scholar 

  • Liu Y, Zhang Z, Jiang Y, Zhang L, Popov VL, Zhang J et al (2011) Obligate intracellular bacterium Ehrlichia inhibiting mitochondrial activity. Microbes Infect 13:232–238. http://dx.doi.org/S1286-4579(10)00280-7 (PMID:21070861) ([pii] 10.1016/j.micinf.2010.https://doi.org/10.021)

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bao W, Lin M, Niu H, Rikihisa Y (2012) Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol 14:1037–1050. http://dx.doi.org/10.1111/j.1462-5822.2012.01775.x (PMID:22348527)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockwood S, Voth DE, Brayton KA, Beare PA, Brown WC, Heinzen RA, Broschat SL (2011) Identification of Anaplasma marginale type IV secretion system effector proteins. PloS One 6:e27724. http://dx.doi.org/10.1371/journal.pone.0027724 (PMID:22140462) PONE-D-11–14673 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Markowitz N, Hawley RC, Ristic M, Cox D, McDade JE (1987) Human infection with Ehrlichia canis, a leukocytic rickettsia. N Engl J Med 316:853–856 (PMID:3029590)

    Article  CAS  Google Scholar 

  • Maruoka M, Suzuki J, Kawata S, Yoshida K, Hirao N, Sato S, et al (2005) Identification of B cell adaptor for PI3-kinase (BCAP) as an Abl interactor 1-regulated substrate of Abl kinases. FEBS Lett 579:2986–2990 (PMID:15893754)

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Rikihisa Y (2009) Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice. Infect Immun 77:245–254 (PMID:19001077)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan Kumar D, Yamaguchi M, Miura K, Lin M, Los M, Coy JF, Rikihisa Y (2013) Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells. PLoS Pathog 9:e1003666. http://dx.doi.org/10.1371/journal.ppat.1003666 (PMID:24098122)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse K, Norimine J, Palmer GH, Sutten EL, Baszler TV, Brown WC (2012) Association and evidence for linked recognition of type IV secretion system proteins VirB9-1, VirB9-2, and VirB10 in Anaplasma marginale. Infect Immun 80:215–227. http://dx.doi.org/10.1128/IAI.05798-11 (PMID:22038917)

    Article  CAS  PubMed  Google Scholar 

  • Mott J, Rikihisa Y (2000) Human granulocytic ehrlichiosis agent inhibits superoxide anion generation by human neutrophils. Infect Immun 68:6697–6703 (PMID:11083784)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott J, Barnewall RE, Rikihisa Y (1999) Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect Immun 67:1368–1378 (PMID:10024584)

    Google Scholar 

  • Mott J, Rikihisa Y, Tsunawaki S (2002) Effects of Anaplasma phagocytophila on NADPH oxidase components in human neutrophils and HL-60 cells. Infect Immun 70:1359–1366 (PMID:11854221)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, Wessler S, Torres J, Smolka A, Backert S (2012) c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest 122(4):1553–1566. https://doi.org/10.1172/JCI61143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Sci 295:679–682 (PMID:11809974)

    Article  CAS  PubMed  Google Scholar 

  • Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–871. http://dx.doi.org/S0092867403001946 (PMID:12654251) [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nelson CM, Herron MJ, Felsheim RF, Schloeder BR, Grindle SM, Chavez AO et al (2008) Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9:364 (PMID:18671858)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu H, Rikihisa Y (2013) Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 9:787–788. http://dx.doi.org/10.4161/auto.23693 (PMID:23388398)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu H, Rikihisa Y (2016) Intracellular bacterium Anaplasma phagocytophilum induces autophagy by secreting substrate Ats-1 that neutralizes the Beclin 1-ATG14L autophagy initiation pathway. In: Hayat MA (ed) Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging. Elsevier Publishing Company, Amsterdam, The Netherlands, pp 308–314

    Chapter  Google Scholar 

  • Niu H, Rikihisa Y, Yamaguchi M, Ohashi N (2006) Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway. Cell Microbiol 8:523–534 (PMID:16469062)

    Article  CAS  PubMed  Google Scholar 

  • Niu H, Yamaguchi M, Rikihisa Y (2008) Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell Microbiol 10:593–605 (PMID:17979984)

    Article  CAS  PubMed  Google Scholar 

  • Niu H, Kozjak-Pavlovic V, Rudel T, Rikihisa Y (2010) Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog 6:e1000774. http://dx.doi.org/10.1371/journal.ppat.1000774 (PMID:20174550)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y (2012) Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci U S A 109:20800–20807. http://dx.doi.org/10.1073/pnas.1218674109 (PMID:23197835)

    Article  Google Scholar 

  • Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102:14238–14243. http://dx.doi.org/0506925102 (PMID:16176982) ([pii] 10.1073/pnas.0506925102)

    Article  CAS  Google Scholar 

  • Noroy C, Meyer DF (2017) Corrigendum: comparative genomics of the zoonotic pathogen Ehrlichia chaffeensis reveals candidate type IV effectors and putative host cell targets. Front Cell Infect Microbiol 7:120. http://dx.doi.org/10.3389/fcimb.2017.00120 (PMID:28382279)

  • Ohashi N, Zhi N, Lin Q, Rikihisa Y (2002) Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect Immun 70:2128–2138 (PMID:11895979)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddock CD, Childs JE (2003) Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev 16:37–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Paddock CD, Yabsley MJ (2007) Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States. Curr Top Microbiol Immunol 315:289–324 (PMID:17848069)

    Google Scholar 

  • Papanikou E, Karamanou S, Economou A (2007) Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 5:839–851. http://dx.doi.org/nrmicro1771 (PMID:17938627) ([pii] 10.1038/nrmicro1771)

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim KJ, Choi KS, Grab DJ, Dumler JS (2004) Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell Microbiol 6:743–751 (PMID:15236641)

    Article  CAS  PubMed  Google Scholar 

  • Pluk H, Dorey K, Superti-Furga G (2002) Autoinhibition of c-Abl. Cell 108:247–259. http://dx.doi.org/S0092867402006232 (PMID:11832214) [pii]

    Article  CAS  PubMed  Google Scholar 

  • Poole AW, Jones ML (2005) A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 17:1323–1332. http://dx.doi.org/S0898-6568(05)00123-3 (PMID:16084691) ([pii] 10.1016/j.cellsig.2005.05.016)

  • Raspe M, Gillis J, Krol H, Krom S, Bosch K, van Veen H, Reits E (2009) Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. J Cell Sci 122:3262–3271. http://dx.doi.org/10.1242/jcs.045567 (PMID:19690053)

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121:1649–1660. http://dx.doi.org/10.1242/jcs.025726 (PMID:18430781)

    Article  CAS  PubMed  Google Scholar 

  • Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS et al (2015) Which way in? The RalF Arf-GEF orchestrates Rickettsia host cell invasion. PLoS Pathog 11:e1005115. http://dx.doi.org/10.1371/journal.ppat.1005115 (PMID:26291822)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikihisa Y (1991) The tribe Ehrlichieae and ehrlichial diseases. Clin Microbiol Rev 4:286–308 (PMID:1889044)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikihisa Y (2010) Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 8:328–339. http://dx.doi.org/nrmicro2318 (PMID:20372158) ([pii] 10.1038/nrmicro2318)

    Article  CAS  PubMed  Google Scholar 

  • Rikihisa Y (2011) Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 24:469–489. http://dx.doi.org/24/3/469 (PMID:21734244) ([pii] 10.1128/cmr.00064-10)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikihisa Y (2015) Molecular pathogenesis of Ehrlichia chaffeensis infection. Annu Rev Microbiol 69:283–304. http://dx.doi.org/10.1146/annurev-micro-091014-104411 (PMID:26488275)

    Article  CAS  PubMed  Google Scholar 

  • Rikihisa Y (2017) Subversion of RAB5-regulated autophagy by the intracellular pathogen Ehrlichia chaffeensis. Small GTPases 0. http://dx.doi.org/10.1080/21541248.2017.1332506 (PMID:28650718)

  • Rikihisa Y, Lin M (2010) Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 13:59–66. http://dx.doi.org/S1369-5274(09)00187-8 (PMID:20053580) ([pii] 10.1016/j.mib.2009.12.008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikihisa Y, Lin M, Niu H, Cheng Z (2009) Type IV secretion system of Anaplasma phagocytophilum and Ehrlichia chaffeensis. Ann NY Acad Sci 1166:106–111. http://dx.doi.org/NYAS04527 (PMID:19538269) ([pii] 10.1111/j.1749-6632.2009.04527.x)

    Article  CAS  PubMed  Google Scholar 

  • Rikihisa Y, Lin M, Niu H (2010) Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol 12:1213–1221. http://dx.doi.org/CMI1500 (PMID:20670295) ([pii] 10.1111/j.1462-5822.2010.01500.x)

  • Seidman D, Hebert KS, Truchan HK, Miller DP, Tegels BK, Marconi RT, Carlyon JA (2015) Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog 11:e1004669. http://dx.doi.org/10.1371/journal.ppat.1004669 (PMID:25658707)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Teymournejad O, Rikihisa Y (2017) Peptide nucleic acid knockdown and intra-host cell complementation of Ehrlichia type IV secretion system effector. Front Cell Infect Microbiol 7:228. http://dx.doi.org/10.3389/fcimb.2017.00228 (PMID:28638803)

  • Shaw DK, McClure EE, Wang X, Pedra JHF (2016) Deviant behavior: tick-borne pathogens and inflammasome signaling. Vet Sci 3:27. http://dx.doi.org/10.3390/vetsci3040027

    Article  PubMed Central  Google Scholar 

  • Sinclair SH, Garcia-Garcia JC, Dumler JS (2015) Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front Microbiol 6:55. http://dx.doi.org/10.3389/fmicb.2015.00055 (PMID:25705208)

  • Sneve ML, Overbye A, Fengsrud M, Seglen PO (2005) Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels. Autophagy 1:157–162. http://dx.doi.org/2037 (PMID:16874067) [pii]

    Article  CAS  PubMed  Google Scholar 

  • Storey JR, Doros-Richert LA, Gingrich-Baker C, Munroe K, Mather TN, Coughlin RT et al (1998) Molecular cloning and sequencing of three granulocytic Ehrlichia genes encoding high-molecular-weight immunoreactive proteins. Infect Immun 66:1356–1363 (PMID:9529053)

    Google Scholar 

  • Su WC, Chao TC, Huang YL, Weng SC, Jeng KS, Lai MM (2011) Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 85:10561–10571. http://dx.doi.org/10.1128/JVI.00173-11 (PMID:21835792)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutten EL, Norimine J, Beare PA, Heinzen, RA, Lopez JE, Morse K et al (2010) Anaplasma marginale type IV secretion system proteins VirB2, VirB7, VirB11, and VirD4 are immunogenic components of a protective bacterial membrane vaccine. Infect Immun 78:1314–1325. http://dx.doi.org/IAI.01207-09 (PMID:20065028) ([pii] 10.1128/iai.01207-09)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H, Shishido T (2003) Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase. J Biol Chem 278:21685–21692 (PMID:12672821)

    Article  CAS  Google Scholar 

  • Teymournejad O, Lin M, Rikihisa Y (2017) Ehrlichia chaffeensis and its invasin EtpE block reactive oxygen species generation by macrophages in a DNase X-dependent manner. mBio 8: e01551–17. http://dx.dpi.org/10.1128/mBio. (PMID:29162709)

    Article  PubMed  PubMed Central  Google Scholar 

  • Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA (2016) Anaplasma phagocytophilum-occupied vacuole interactions with the host cell cytoskeleton. Vet Sci 3:25. https://doi.org/10.3390/vetsci3030025

    Article  PubMed Central  Google Scholar 

  • Vergunst AC, van Lier MCM, den Dulk-Ras A, Grosse Stuve TA, Ouwehand A, Hooykaas PJJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102:832–837. https://doi.org/10.1073/pnas.0406241102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakeel A, den Dulk-Ras A, Hooykaas PJ, McBride JW (2011) Ehrlichia chaffeensis tandem repeat proteins and Ank200 are type 1 secretion system substrates related to the repeats-in-toxin exoprotein family. Front Cell Infect Microbiol 1:22. http://dx.doi.org/10.3389/fcimb.2011.00022 (PMID:22919588)

  • Wang X, Kikuchi T, Rikihisa Y (2007) Proteomic identification of a novel Anaplasma phagocytophilum DNA binding protein that regulates a putative transcription factor. J bacteriol 189:4880–4886 (PMID:17483233)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster P, Ijdo JW, Chicoine LM, Fikrig E (1998) The agent of Human Granulocytic Ehrlichiosis resides in an endosomal compartment. J Clin Invest 101:1932–1941 (PMID:9576758).

    Article  CAS  PubMed Central  Google Scholar 

  • Xiong Q, Bao W, Ge Y, Rikihisa Y (2008) Ehrlichia ewingii infection delays spontaneous neutrophil apoptosis through stabilization of mitochondria. J Infect Dis 197:1110–1118 (PMID:18462160)

    Article  CAS  PubMed  Google Scholar 

  • Yoshiie K, Kim HY, Mott J, Rikihisa Y (2000) Intracellular infection by the human granulocytic ehrlichiosis agent inhibits human neutrophil apoptosis. Infect Immun 68:1125–1133 (PMID:10678916)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks T. Vojt for help in preparing the figures. Some of the studies from the authors’ laboratory reported in this review were supported by a grant (R01AI054476) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuko Rikihisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rikihisa, Y. (2017). Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species. In: Backert, S., Grohmann, E. (eds) Type IV Secretion in Gram-Negative and Gram-Positive Bacteria. Current Topics in Microbiology and Immunology, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-319-75241-9_12

Download citation

Publish with us

Policies and ethics