Skip to main content

A Multicriteria Decision Support System Framework for Computer Selection

  • Chapter
  • First Online:
Exploring Intelligent Decision Support Systems

Abstract

Nowadays, buying a computer for family use is a frequent practice, yet the wide variety of equipment that markets offer can be overwhelming. Each computer has its own characteristics and attributes, and some of such attributes—especially qualitative features—may be difficult to assess. This chapter presents a theoretical framework that allows families to evaluate computers from a multi-attribute perspective by using two techniques: the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The former is used to weight the attributes, whereas the latter is used to propose a solution. A case study is presented to illustrate the computer selection process performed by a four-member family on four alternatives by taking into account four quantitative attributes—cost, processor speed, RAM, and hard drive capacity—and two qualitative attributes—brand prestige and after-sales service. Our findings demonstrate that our AHP-TOPSIS approach is friendly to users, especially to non-expert users, since they can perform the evaluation process on their own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cingi, C.C.: Computer aided education. Procedia—Soc. Behav. Sci. 103, 220–229 (2013)

    Article  Google Scholar 

  2. Yigit, T., Koyun, A., Yuksel, A.S., Cankaya, I.A.: Evaluation of blended learning approach in computer engineering education. Procedia—Soc. Behav. Sci. 141, 807–812 (2014)

    Article  Google Scholar 

  3. Simkova, M.: Using of computer games in supporting education. Procedia—Soc. Behav. Sci. 141, 1224–1227 (2014)

    Article  Google Scholar 

  4. Patterson, R.W., Patterson, R.M.: Computers and productivity: evidence from laptop use in the college classroom. Econ. Educ. Rev. 57, 66–79 (2017)

    Article  Google Scholar 

  5. Challenges, C.N.: 2016 BSA Global Cloud. (2016)

    Google Scholar 

  6. Gartner: Quarterly personal computer (PC) vendor shipments worldwide, from 2009 to 2017, by vendor (in million units). Statista—the statistics portal. https://www.statista.com/statistics/263393/global-pc-shipments-since-1st-quarter-2009-by-vendor/

  7. Chen, S.-M., Huang, Z.-C.: Multiattribute decision making based on interval-valued intuitionistic fuzzy values and particle swarm optimization techniques. Inf. Sci. (Ny) 397–398, 206–218 (2017)

    Article  Google Scholar 

  8. Chen, S.-M., Cheng, S.-H., Chiou, C.-H.: Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inf. Fusion. 27, 215–227 (2016)

    Article  Google Scholar 

  9. Ekel, P., Kokshenev, I., Parreiras, R., Pedrycz, W., Pereira, J.: Multiobjective and multiattribute decision making in a fuzzy environment and their power engineering applications. Inf. Sci. (Ny) 361–362, 100–119 (2016)

    Article  Google Scholar 

  10. Ahn, B.S.: Approximate weighting method for multiattribute decision problems with imprecise parameters. Omega (United Kingdom) 72, 87–95 (2017)

    Google Scholar 

  11. Taha, R.A., Choi, B.C., Chuengparsitporn, P., Cutar, A., Gu, Q., Phan, K.: Application of hierarchical decision modeling for selection of laptop. In: PICMET ’07–2007 Portland International Conference on Management of Engineering & Technology, pp. 1160–1175. IEEE (2007)

    Google Scholar 

  12. García, J.L., Alvarado, A., Blanco, J., Jiménez, E., Maldonado, A.A., Cortés, G.: Multi-attribute evaluation and selection of sites for agricultural product warehouses based on an analytic hierarchy process. Comput. Electron. Agric. 100, 60–69 (2014)

    Article  Google Scholar 

  13. Chuu, S.-J.: Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information. Comput. Ind. Eng. 57, 1033–1042 (2009)

    Article  Google Scholar 

  14. Ertuğrul, İ., Karakaşoğlu, N.: Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. Int. J. Adv. Manuf. Technol. 39, 783–795 (2008)

    Article  Google Scholar 

  15. Singh, H., Kumar, R.: Hybrid methodology for measuring the utilization of advanced manufacturing technologies using AHP and TOPSIS. Benchmarking An Int. J. 20, 169–185 (2013)

    Article  Google Scholar 

  16. Kreng, V.B., Wu, C.-Y., Wang, I.C.: Strategic justification of advanced manufacturing technology using an extended AHP model. Int. J. Adv. Manuf. Technol. 52, 1103–1113 (2011)

    Article  Google Scholar 

  17. Anvari, A., Zulkifli, N., Sorooshian, S., Boyerhassani, O.: An integrated design methodology based on the use of group AHP-DEA approach for measuring lean tools efficiency with undesirable output. Int. J. Adv. Manuf. Technol. 70, 2169–2186 (2014)

    Article  Google Scholar 

  18. Bai, C., Dhavale, D., Sarkis, J.: Integrating Fuzzy C-Means and TOPSIS for performance evaluation: an application and comparative analysis. Expert Syst. Appl. 41, 4186–4196 (2014)

    Article  Google Scholar 

  19. Lima-Junior, F.R., Carpinetti, L.C.R.: Combining SCOR®model and fuzzy TOPSIS for supplier evaluation and management. Int. J. Prod. Econ. 174, 128–141 (2016)

    Article  Google Scholar 

  20. Maldonado-Macías, A., Alvarado, A., García, J.L., Balderrama, C.O.: Intuitionistic fuzzy TOPSIS for ergonomic compatibility evaluation of advanced manufacturing technology. Int. J. Adv. Manuf. Technol. 70, 2283–2292 (2014)

    Article  Google Scholar 

  21. Zyoud, S.H., Fuchs-Hanusch, D.: A bibliometric-based survey on AHP and TOPSIS techniques. http://www.sciencedirect.com/science/article/pii/S0957417417300982?via%3Dihub (2017)

  22. Pelorus, Karahalios, H.: The application of the AHP-TOPSIS for evaluating ballast water treatment systems by ship operators. Transp. Res. Part D Transp. Environ. 52, 172–184 (2017)

    Google Scholar 

  23. Kusumawardani, R.P., Agintiara, M.: Application of Fuzzy AHP-TOPSIS method for decision making in human resource manager selection process. In: Procedia Comput. Sci., 638–646. Elsevier (2015)

    Google Scholar 

  24. Sindhu, S., Nehra, V., Luthra, S.: Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: case study of India. http://www.sciencedirect.com/science/article/pii/S1364032117301405?via%3Dihub (2017)

  25. Carmone, F.J., Kara, A., Zanakis, S.H.: A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP. Eur. J. Oper. Res. 102, 538–553 (1997)

    Article  MATH  Google Scholar 

  26. Gass, S.I., Rapcsák, T.: Singular value decomposition in AHP. Eur. J. Oper. Res. 154, 573–584 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lai, S.K.: A preference-based interpretation of AHP. Omega 23, 453–462 (1995)

    Article  Google Scholar 

  28. Russo, R.D.F.S.M., Camanho, R.: Criteria in AHP: a systematic review of literature. Procedia Comput. Sci., 1123–1132. Elsevier (2015)

    Google Scholar 

  29. Dymova, L., Sevastjanov, P., Tikhonenko, A.: A direct interval extension of TOPSIS method. Expert Syst. Appl. 40, 4841–4847 (2013)

    Article  Google Scholar 

  30. NǍdǍban, S., Dzitac, S., Dzitac, I.: Fuzzy TOPSIS: a general view. Procedia Comput. Sci., 823–831. Elsevier (2016)

    Google Scholar 

  31. Zhou, S., Liu, W., Chang, W.: An improved TOPSIS with weighted hesitant vague information. Chaos, Solitons Fractals 89, 47–53 (2015)

    Article  MATH  Google Scholar 

  32. Liang, D., Xu, Z.: The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl. Soft Comput. 60, 167–179 (2017)

    Article  Google Scholar 

  33. Saaty, T.L.: Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Math. Comput. Model. 46, 860–891 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Saaty, T.L.: Decision-making with the AHP: why is the principal eigenvector necessary. Eur. J. Oper. Res. 145, 85–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saaty, T.L.: Highlights and critical points in the theory and application of the analytic hierarchy process. Eur. J. Oper. Res. 74, 426–447 (1994)

    Article  MATH  Google Scholar 

  36. Escobar, M.T., Aguarón, J., Moreno-Jiménez, J.M.: A note on AHP group consistency for the row geometric mean priorization procedure. Eur J Oper Res. 153(2), 318–322 (2004)

    Google Scholar 

  37. Dong, Y., Zhang, G., Hong, W.C., Xu, Y.: Consensus models for AHP group decision making under row geometric mean prioritization method. Decis. Support Syst. 49, 281–289 (2010)

    Article  Google Scholar 

  38. Chen, M.F., Tzeng, G.H.: Combining grey relation and TOPSIS concepts for selecting an expatriate host country. http://www.sciencedirect.com/science/article/pii/S0895717705000075?via%3Dihub (2004)

  39. Rudnik, K., Kacprzak, D.: Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system. Appl. Soft Comput. J. 52, 1020–1041 (2017)

    Article  Google Scholar 

  40. Lee, K.-K., Lee, K.-H., Woo, E.-T., Han, S.-H.: Optimization process for concept design of tactical missiles by using pareto front and TOPSIS. Int. J. Precis. Eng. Manuf. 15, 1371–1376 (2014)

    Article  Google Scholar 

  41. Mao, N., Song, M., Deng, S.: Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort. Appl. Energy 180, 536–545 (2016)

    Article  Google Scholar 

  42. Li, X., Chen, X.: Extension of the TOPSIS method based on prospect theory and trapezoidal intuitionistic fuzzy numbers for group decision making. J. Syst. Sci. Syst. Eng. 23, 231–247 (2014)

    Article  Google Scholar 

  43. Çevik Onar, S., Büyüközkan, G., Öztayşi, B., Kahraman, C.: A new hesitant fuzzy QFD approach: an application to computer workstation selection. Appl. Soft Comput. J. 46, 1–16 (2016)

    Article  Google Scholar 

  44. Timmreck, E.M.: Computer selection methodology. ACM Comput. Surv. 5, 200–222 (1973)

    Google Scholar 

  45. Poynter, D.: Computer selection guide (1983)

    Google Scholar 

  46. Preston, J.D.: Guide to computer selection (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Luis García-Alcaraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Alcaraz, J.L., Martínez-Loya, V., Díaz-Reza, R., Sosa, L.A., Valdiviezo, I.C. (2018). A Multicriteria Decision Support System Framework for Computer Selection. In: Valencia-García, R., Paredes-Valverde, M., Salas-Zárate, M., Alor-Hernández, G. (eds) Exploring Intelligent Decision Support Systems. Studies in Computational Intelligence, vol 764. Springer, Cham. https://doi.org/10.1007/978-3-319-74002-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74002-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74001-0

  • Online ISBN: 978-3-319-74002-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics