Skip to main content

Unfractionated Heparin and Low-Molecular-Weight Heparin

  • Chapter
  • First Online:
Anticoagulation Therapy

Abstract

Unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) are highly utilized throughout inpatient and ambulatory care settings for many indications, including the treatment of venous thromboembolism, thromboprophylaxis, and acute coronary syndromes. In this chapter, we review the evidence-based recommendations and pharmacology of both UFH and LMWH with a detailed description of their mechanisms of action, pharmacokinetics, and pharmacodynamics. We highlight approved indications and dosing as well as common unapproved uses of these agents. We review important monitoring considerations for each agent in addition to considerations that should be evaluated when treating certain patient populations. Finally, we discuss various reversal strategies and complications that can arise from their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsh J, Raschke R. Heparin and low molecular weight heparin. The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126:188S–203S.

    Article  CAS  Google Scholar 

  2. Weitz DS, Weitz JI. Update on heparin: what do we need to know? J Thromb Thrombolysis. 2010;29:199–207.

    Article  CAS  Google Scholar 

  3. Alquwaizani M, Buckley L, Adams C, Fanikos J. Anticoagulants: a review of the pharmacology, dosing, and complications. Curr Emerg Hosp Med Rep. 2013;1:83–97.

    Article  Google Scholar 

  4. Bussey H, Francis J. Heparin consensus group. Heparin overview and issues. Pharmacotherapy. 2004;24:103S–7S.

    Article  CAS  Google Scholar 

  5. Hull RD, Raskob GE, Hirsh J, Jay RM, Leclerc JR, Geerts WH, et al. Continuous intravenous heparin compared with intermittent subcutaneous heparin in the initial treatment of proximal-vein thrombosis. N Engl J Med. 1986;315:1109–14.

    Article  CAS  Google Scholar 

  6. Raschke RA, Reilly BM, Guidry JR, Fontana JR, Srinvas S. The weight-based heparin dosing nomogram compared with a “standard care” nomogram: a randomized controlled trial. Ann Intern Med. 1993;119:874–81.

    Article  CAS  Google Scholar 

  7. King CS, Holley AB, Jackson JL, Shorr AF, Moores LK. Twice vs three times daily heparin dosing for thromboembolism prophylaxis in the general medical population: a metaanalysis. Chest. 2007;131:507–16.

    Article  CAS  Google Scholar 

  8. Braunwald E, Antman EA, Beasley JW, Califf RM, Cheitlin MD, Hochman JS, et al. ACC/AHA guidelines for the management of patients with unstable angina, and non-ST-segment elevation myocardial infarction. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee on the management of patients with unstable angina). J Am Coll Cardiol. 2000;36:970–1062.

    Article  CAS  Google Scholar 

  9. Raschke R, Gollihare B, Peirce J. The effectiveness of implementing the weight-based heparin nomogram as a practice guideline. Arch Intern Med. 1996;156:1645–9.

    Article  CAS  Google Scholar 

  10. Smith ML, Wheeler KE. Weight-based heparin protocol using antifactor Xa monitoring. Am J Health-Syst Pharm. 2010;67:371–4.

    Article  CAS  Google Scholar 

  11. Gehrie E, Laposata M. Test of the month: the chromogenic antifactor Xa assay. Am J Hematol. 2012;87:194–6.

    Article  CAS  Google Scholar 

  12. World Heart Federation. Obesity. http://www.world-heart-federation.org/cardiovascular-health/cardiovascular-disease-risk-factors/obesity/. Accessed 11/3/2016.

  13. Patel JP, Roberts LN, Arya R. Anticoagulating obese patients in the modern era. Br J Haematol. 2011;155:137–49.

    Article  CAS  Google Scholar 

  14. Dager WE, Gulseth MP, Nutescu EA. Anticoagulation therapy: a point-of-care guide. Bethesda, MD: American Society of Health-System Pharmacists; 2011. p. 33–59.

    Google Scholar 

  15. Myzienski AE, Lutz M, Smythe M. Unfractionated heparin dosing for venous thromboembolism in morbidly obese patients: case report and review of the literature. Pharmacotherapy. 2010;3:324.

    Article  Google Scholar 

  16. Buehler KS, Yancey AM. Underdosing in obesity—an epidemic: focus on anticoagulation. Formul J Anticoagulat. 2013. http://formularyjournal.modernmedicine.com.

  17. Garcia DA, Baglin TP, Weitz JI, Samama MM. Parenteral anticoagulants antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;1(Suppl):e24S–43S. https://doi.org/10.1378/chest.11-2291.

    Article  CAS  Google Scholar 

  18. Gerlach AT, Folino J, Morris BN, Murphy CV, Stawicki SP, Cook CH. Comparison of heparin dosing based on actual body weight in non-obese, obese and morbidly obese critically ill patients. Int J Crit Illn Inj Sci. 2013;3:195–9.

    Article  Google Scholar 

  19. Hurewitz AN, Khan SU, Groth ML, Patrick PA, Brand DA. Dosing of unfractionated heparin in obese patients with venous thromboembolism. J Gen Intern Med. 2010;26:487–91.

    Article  Google Scholar 

  20. Pinder T, Daughtry W, Shah Z, Vailoces TO. A weight-based heparin protocol for improved anticoagulation in a coronary care unit. J Clin Outcomes Manag. 1999;6:27–33.

    Google Scholar 

  21. Yee W, Norton LL. Optimal weight base for a weight-based heparin dosing protocol. Am J Health Syst Pharm. 1998;55:159–62.

    CAS  PubMed  Google Scholar 

  22. Riney JN, Hollands JM, Smith JR, Deal EN. Identifying optimal infusion rates for unfractionated heparin in morbidly obese patients. Ann Pharmacother. 2010;44:1141–51.

    Article  CAS  Google Scholar 

  23. Bates SM, Ginsberg JS. How we manage venous thromboembolism during pregnancy. Blood. 2002;100:3470–8.

    Article  CAS  Google Scholar 

  24. Dresang L, Fontaine P, Leeman L, King VJ. Venous thromboembolism during pregnancy. Am Fam Physician. 2008;77:1709–916.

    PubMed  Google Scholar 

  25. Gibson PS, Powrie R. Anticoagulants and pregnancy: when are they safe? Cleve Clin J Med. 2009;79:113–27.

    Article  Google Scholar 

  26. Kamel H, Navi BB, Sriram N, Hovsepian BS, Devereux RB, Elkind M. Risk of a thrombotic event after the 6-week postpartum period. N Engl J Med. 2014;370:1307–15. 1–9.

    Article  CAS  Google Scholar 

  27. Casele HL. The use of unfractionated heparin and low molecular weight heparin in pregnancy. Clin Obstet Gynecol. 2006;49:895–905.

    Article  Google Scholar 

  28. Bates SM, Greer IA, Middeldorp S, Veenstra DL, Prabulos AM, Vandvik PO, et al. VTE, thrombophilia, antithrombotic therapy and pregnancy. Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e691S–736S.

    Article  CAS  Google Scholar 

  29. Gould MK, Dembitzer AD, Doyle RL, Hastie TJ, Garber AM. Low-molecular-weight heparins compared with unfractionated heparin for treatment of acute deep venous thrombosis. A meta-analysis of randomized, controlled trials. Ann Intern Med. 1999;130(10):800–9.

    Article  CAS  Google Scholar 

  30. Quinlan DJ, McQuillan A, Eikelboom JW. Low-molecular-weight heparin compared with intravenous unfractionated heparin for treatment of pulmonary embolism: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2004;140(3):175–83.

    Article  CAS  Google Scholar 

  31. Lepercq J, Conard J, Borel-Derlon A, Darmon JY, Boudignat O, Francoual C, et al. Venous thromboembolism during pregnancy: a retrospective study of enoxaparin safety in 624 pregnancies. BJOG. 2001;108(11):1134–40.

    CAS  PubMed  Google Scholar 

  32. Sanson BJ, Lensing AWA, Prins MH, Ginsberg JS, Barkagan ZS, Lavenne-Pardonge E, et al. Safety of low-molecular-weight heparin in pregnancy: a systematic review. Thromb Haemost. 1999;81(5):668–72.

    Article  CAS  Google Scholar 

  33. Greer IA, Nelson-Piercy C. Low-molecular-weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood. 2005;106(2):401–7.

    Article  CAS  Google Scholar 

  34. Springel EH. Thromboembolism in pregnancy medicine [Internet]. Obstetrics and Gynecology: Medscape Ref Drugs Dis Proced. [Updated 2016 Jan 20; cited 2016 Apr 12]. Available from: https://emedicine.medscape.com/article/2056380-overview#a1

    Google Scholar 

  35. Ginsberg JS, Hirsh J. Anticoagulants during pregnancy. Annu Rev Med. 1989;40:79–86.

    Article  CAS  Google Scholar 

  36. American College of Obstetricians and Gynecologists (ACOG). Thromboembolism in pregnancy. Washington, DC: American College of Obstetricians and Gynecologists (ACOG); 2011. (ACOG practice bulletin; 123). https://doi.org/10.1097/AOG.0b013e3182310c4c.

    Book  Google Scholar 

  37. Cushman M, Lim W, Zakai NA. Clinical Practice Guide on Antithrombotic Drug Dosing and Management of Antithrombotic Drug-Associated Bleeding Complications in Adults: 9th edition American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Am Soc Hematol. 2014(2):1–4.

    Google Scholar 

  38. Sylvester K, Rimsans J, Fanikos J. Anticoagulant therapy; Chapter 254. In: McKean S, Dressler D, Ross J, Schurer D, editors. Principles and practice of hospital medicine. 2nd ed. New York: McGraw-Hill; 2017. [In Press; expected publication Spring 2017].

    Google Scholar 

  39. Menon V, Berkowitz SD, Antman EM, Fuchs RM, Hochman JS. New heparin dosing recommendations for patient with acute coronary syndromes. Am J Med. 2001;110:641–50.

    Article  CAS  Google Scholar 

  40. Granger CB, Hirsh J, Califf RM, Col J, White HD, Betriu A, et al. Activated partial thromboplastin time and outcomes after thrombolytic therapy for acute myocardial infarction: results from the GUSTO-I trial. Circulation. 1996;93:870–8.

    Article  CAS  Google Scholar 

  41. Arnand SS, Yusuf S, Pogue J, Ginsberg JS, Hirsh J. Organization to assess strategies for ischemic syndromes investigators. Relationship of activated partial thromboplastin time to coronary events and bleeding in patients with acute coronary syndromes who receive heparin. Circulation. 2003;107:2884–8.

    Article  Google Scholar 

  42. Protamine Package Insert. APP Pharmaceuticals, LLC. Revised January 2008.

    Google Scholar 

  43. McEvoy GK, editor. Protamine sulfate. In: AHFS drug information 2008. Bethesda, MD: American Society of Health-System Pharmacists; 2008; p. 1595–1597.

    Google Scholar 

  44. Krishnaswamy A, Lincoff M, Cannon C. The use and limitations of unfractionated heparin. Crit Pathw Cardiol. 2010;9(1):35–40.

    Article  Google Scholar 

  45. Levine MN, Hirsh J, Gent M, Turpie AG, Cruickshank M, Weitz J, et al. A randomized trial comparing activated thromboplastin time with heparin assay in patients with acute venous thromboembolism requiring large daily doses of heparin. Arch Intern Med. 1994;154(1):49–56.

    Article  CAS  Google Scholar 

  46. Wolinsky-Friedland M. Drug-induced metabolic bone disease. Endocrinol Metab Clin N Am. 1995;24(2):395–420.

    CAS  Google Scholar 

  47. Dahlman T, Lindvall N, Hellgren M. Osteopenia in pregnancy during long-term heparin treatment: a radiological study post partum. Br J Obstet Gynaecol. 1990;97(3):221–8.

    Article  CAS  Google Scholar 

  48. Dahlman TC, Sjöberg HE, Ringertz H. Bone mineral density during long-term prophylaxis with heparin in pregnancy. Am J Obstet Gynecol. 1994;170(5 Pt 1):1315.

    Article  CAS  Google Scholar 

  49. Dahlman TC. Osteoporotic fractures and the recurrence of thromboembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol. 1993;168(4):1265–70.

    Article  CAS  Google Scholar 

  50. Linkins LA, Dans AL, Moores LK, Bona R, Davidson BL, Schulman S, et al. Treatment and prevention of heparin-induced thrombocytopenia: antithrombotic therapy and prevention of thrombosis 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e495S–530S.

    Article  CAS  Google Scholar 

  51. Greinacher A, Alban S, Omer-Adam MA, Weitschies W, Warkentin TE. Heparin induced thrombocytopenia: a stoichiometry-based model to explain the differing immunogenicities of unfractionated heparin, low-molecular-weight heparin, and fondaparinux in different clinical settings. Thromb Res. 2008;122(2):211–20.

    Article  CAS  Google Scholar 

  52. Warkentin TE, Cook RJ, Marder VJ, Greinacher A. Anti-PF4/heparin antibody formation postorthopedic surgery thromboprophylaxis: the role of non-drug risk factors and evidence for a stoichiometry-based model of immunization. J Thromb Haemost. 2010;8(3):504–12.

    Article  CAS  Google Scholar 

  53. Warkentin TE, Sheppard JI, Moore JC, Sigouin CS, Kelton JG. Quantitative interpretation of optical density measurements using PF4-dependent enzyme-immunoassays. J Thromb Haemost. 2008;6(8):1304–12.

    Article  CAS  Google Scholar 

  54. Warkentin TE, Arnold DM, Nazi I, Kelton JG. The platelet serotonin-release assay. Am J Hematol. 2015;90:564–72.

    Article  CAS  Google Scholar 

  55. McFarland J, Lochowicz A, Aster R, Chappell B, Curtis B. Improving the specificity of the PF4 ELISA in diagnosing heparin-induced thrombocytopenia. Am J Hematol. 2012;87(8):776–81.

    Article  CAS  Google Scholar 

  56. Warkentin TE, Linkins LA. Non-necrotizing heparin-induced skin lesions and the 4Ts score. J Thromb Haemost. 2010;8:1483–5.

    Article  CAS  Google Scholar 

  57. Lo GK, Juhl D, Warkentin TE, Sigouin CS, Eichler P, Greinacher A. Evaluation of pretest clinical score (4 T’s) for the diagnosis of heparin-induced thrombocytopenia in two clinical settings. J Thromb Haemost. 2006;4(4):759–65.

    Article  CAS  Google Scholar 

  58. Passero F, Xavier M. Retrospective analysis of heparin-induced thrombocytopenia management at a large tertiary hospital. J Hematol. 2014;3(2):2–33.

    Google Scholar 

  59. Merli GJ, Groce JB. Pharmacological and clinical differences between low-molecular-weight heparins: implications for prescribing practice and therapeutic interchange. P T. 2010;35(2):95–105.

    PubMed  PubMed Central  Google Scholar 

  60. Lovenox [package insert]. Bridgewater (NJ): Sanofi Aventis; 2008.

    Google Scholar 

  61. Fragmin [package insert]. New York (NY): Pfizer, Inc.; 2016.

    Google Scholar 

  62. Innohep [package insert]. Boulder (CO): Celgene; 2008.

    Google Scholar 

  63. Kearon C, Akl E, Comerota AJ, Prandoni P, Bounameauz H, Goldbaher SZ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e419S–e94S.

    Article  CAS  Google Scholar 

  64. You JJ, Singer DE, Howard PA, Lane DA, Eckman MH, Fang MC, et al. Antithrombotic therapy for atrial fibrillation: antithrombotic therapy and prevention of thrombosis 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e531S–75S.

    Article  CAS  Google Scholar 

  65. Nutescu EA, Spinler SA, Wittkowsky A, Dager WE. Low-molecular-weight heparins in renal impairment and obesity: available evidence and clinical practice recommendations across medical and surgical settings. Ann Pharmacother. 2009;43(6):1064–83.

    Article  CAS  Google Scholar 

  66. Wang TF, Milligan PE, Wong CA, Deal EN, Thoelke MS, Gage BF. Efficacy and safety of high-dose thromboprophylaxis in morbidly obese inpatients. Thromb Haemost. 2014;111(1):88–93.

    Article  CAS  Google Scholar 

  67. Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation. 2008;117(1):93–102.

    Article  Google Scholar 

  68. Al-Yaseen E, Wells PS, Anderson J, Martin J, Kovacs MJ. The safety of dosing dalteparin based on actual body weight for the treatment of acute venous thromboembolism in obese patients. J Thromb Haemost. 2005;3(1):100–2.

    Article  CAS  Google Scholar 

  69. Hainer JW, Barrett JS, Assaid CA, Fossler MJ, Cox DS, Leathers T, et al. Dosing in heavy-weight/obese patients with the LMWH, tinzaparin: a pharmacodynamic study. Thromb Haemost. 2002;87:817–23.

    Article  CAS  Google Scholar 

  70. Becker RC, Spencer FA, Gibson M, Rush JE, Sanderink G, Murphy SA, et al. TIMI 11A investigators. Influence of patient characteristics and renal function on factor Xa inhibition pharmacokinetics and pharmacodynamics after enoxaparin administration in non-ST-segment elevation acute coronary syndromes. Am Heart J. 2002;143(5):753–9.

    Article  CAS  Google Scholar 

  71. Freeman AL, Pendleton RC, Rondina MT. Prevention of venous thromboembolism in obesity. Expert Rev Cardiovasc Ther. 2010;8(12):1711–21.

    Article  Google Scholar 

  72. Wilson SJ, Wilbur K, Burton E, Anderson DR. Effect of patient weight on the anticoagulant response to adjusted therapeutic dosage of low-molecular- weight heparin for the treatment of venous thromboembolism. Haemostasis. 2001;31(1):42–8.

    CAS  PubMed  Google Scholar 

  73. Schmid P, Fischer AG, Wuillemin WA. Low-molecular-weight heparin in patients with renal insufficiency. Swiss Med Wkly. 2009;139(31–32):438–52.

    CAS  PubMed  Google Scholar 

  74. Harenberg J. Is laboratory monitoring of low-molecular-weight heparin therapy necessary? Yes. J Thromb Haemost. 2004;2:547–50.

    Article  CAS  Google Scholar 

  75. Frederiksen SG, Hedenbro JL, Norgren L. Enoxaparin effect depends on body-weight and current doses may be inadequate in obese patients. Br J Surg. 2003;90:547–8.

    Article  CAS  Google Scholar 

  76. Yee J, Duffull S. The effect of body weight on dalteparin pharmacokinetics. Eur J Clin Pharmacol. 2000;56:293–7.

    Article  CAS  Google Scholar 

  77. Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet. 2000;39(3):215–31.

    Article  CAS  Google Scholar 

  78. Green B, Duffull S. Development of a dosing strategy for enoxaparin in obese patients. Br J Clin Pharmacol. 2003;56(1):96–103.

    Article  CAS  Google Scholar 

  79. Sanderink GJ, Le Liboux A, Jariwala N, Harding N, Ozoux ML, Shukla U, et al. The pharmacokinetics and pharmacodynamics of enoxaparin in obese volunteers. Clin Pharmacol Ther. 2002;72:308–18.

    Article  CAS  Google Scholar 

  80. Shelkrot M, Miraka J, Perez ME. Appropriate enoxaparin dose for venous thromboembolism prophylaxis in patients with extreme obesity. Hosp Pharm. 2014;49(8):740–7.

    Article  CAS  Google Scholar 

  81. Scholten DJ, Hoedema RM, Scholten SE. A comparison of two different prophylactic dose regimens of low molecular weight heparin in bariatric surgery. Obes Surg. 2002;12:19–24.

    Article  Google Scholar 

  82. Kucher N, Leizorovicz A, Vaitkus PT, Cohen AT, Turpie AG, Osson CG, et al. Efficacy and safety of fixed low-dose dalteparin in preventing venous thromboembolism among obese or elderly hospitalized patients: a subgroup analysis of the PREVENT trial. Arch Intern Med. 2005;165:341–5.

    Article  CAS  Google Scholar 

  83. Vaitkus PT, Leizorovicz A, Goldhaber SZ. The PREVENT Investigator Group. Rationale and design of a clinical trial of a low-molecular-weight heparin in preventing clinically important venous thromboembolism in medical patients: the prospective evaluation of dalteparin efficacy for prevention of venous thromboembolism in immobilized patients trial (the PREVENT study). Vasc Med. 2002;7(4):269–73.

    Article  Google Scholar 

  84. Freeman A, Horner T, Pendleton RC, Rondina MT. Prospective comparison of three enoxaparin dosing regimens to achieve target anti-factor Xa levels in hospitalized, medically ill patients with extreme obesity. Am J Hematol. 2012;87:740.

    Article  CAS  Google Scholar 

  85. Thorevska N, Amoateng-Adjepong Y, Sabahi R, Schiopescu I, Salloum A, Muralidharan V, et al. Anticoagulation in hospitalized patients with renal insufficiency: a comparison of bleeding rates with unfractionated heparin vs enoxaparin. Chest. 2004;125(3):856–63.

    Article  CAS  Google Scholar 

  86. Chow SL, Zammit K, West K, Dannenhoffer M, Lopez-Candales A. Correlation of antifactor xa concentrations with renal function in patients on enoxaparin. J Clin Pharmacol. 2003;43(6):586–90.

    Article  CAS  Google Scholar 

  87. Fox KAA, Antman EM, Montalescot G, Agewall S, SomaRaju B, Verheugt FW, et al. The impact of renal dysfunction on outcomes in the ExTRACT-TIMI 25 trial. J Am Coll Cardiol. 2007;49(23):2249–55.

    Article  CAS  Google Scholar 

  88. Schmid P, Brodmann D, Odermatt Y, Fischer AG, Wuillemin WA. Study of bioaccumulation of dalteparin at a therapeutic dose in patients with renal insufficiency. J Thromb Haemost. 2009;7:1629–32.

    Article  CAS  Google Scholar 

  89. Siguret V, Pautas E, Fevrier M, Wipff C, Durand-Gasselin B, Laurent M, et al. Elderly patients treated with tinzaparin (Innohep®) administered once daily (175 anti-Xa IU/kg): anti-Xa and anti-IIa activities over 10 days. Thromb Haemost. 2000;84:800–4.

    Article  CAS  Google Scholar 

  90. Hughes S, Szeki I, Nash MJ, Thachil J. Anticoagulation in chronic kidney disease patients—the practical aspects. Clin Kidney J. 2014;7(5):442–9.

    Article  CAS  Google Scholar 

  91. Montalescot G, Collet JP, Tanguy ML, et al. Anti-Xa activity relates to survival and efficacy in unselected acute coronary syndrome patients treated with enoxaparin. Circulation. 2004;110:392–8.

    Article  CAS  Google Scholar 

  92. Forestier F, Daffos F, Rainaut M, Toulemonde F. Low molecular weight heparin (CY 216) does not cross the placenta during the third trimester of pregnancy. Thromb Haemost. 1987;57(2):234.

    CAS  PubMed  Google Scholar 

  93. Ellison J, Walker ID, Greer IA. Antenatal use of enoxaparin for prevention and treatment of thromboembolism during pregnancy. BJOG. 2000;107(9):1116–21.

    Article  CAS  Google Scholar 

  94. Rodie VA, Thomson AJ, Stewart FM, Quinn AJ, Walker ID, Greer IA. Low molecular weight heparin for the treatment of venous thromboembolism in pregnancy: a case series. BJOG. 2002;1099:1020–4.

    Article  Google Scholar 

  95. Knight M, UKOSS. Antenatal pulmonary embolism: risk factors, management and outcomes. BJOG. 2008;1154:453–61.

    Article  Google Scholar 

  96. Egan G, Ensom MHH. Measuring anti–factor Xa activity to monitor low-molecular-weight heparin in obesity: a critical review. Can J Hosp Pharm. 2015;68(1):33–47.

    PubMed  PubMed Central  Google Scholar 

  97. Jacobsen AF, Qvigstad E, Sandset PM. Low molecular weight heparin (dalteparin) for the treatment of venous thromboembolism in pregnancy. BJOG. 2003;1102:139–44.

    Article  Google Scholar 

  98. Dolovich LR, Ginsberg JS, Douketis JD, Holbrook AM, Cheah G. A meta-analysis comparing low- molecular-weight heparins with unfractionated heparin in the treatment of venous thromboembolism: examining some unanswered questions regarding location of treatment, product type, and dosing frequency. Arch Intern Med. 2000;160(2):181–8.

    Article  CAS  Google Scholar 

  99. van Dongen CJ, van den Belt AG, Prins MH, Lensing AW. Fixed dose subcutaneous low molecular weight heparins versus adjusted dose unfractionated heparin for venous thromboembolism. Cochrane Database Syst Rev. 2004;(4):CD001100.

    Google Scholar 

  100. Blazing MA, de Lemos JA, White HD, Fox KA, Verheugt FW, Ardissino D, et al. Safety and efficacy of enoxaparin vs unfractionated heparin in patients with non-ST-segment elevation acute coronary syndromes who receive tirofiban and aspirin: a randomized controlled trial. JAMA. 2004;292 (98):55–64.

    Article  Google Scholar 

  101. Ferguson JJ, Califf RM, Antman EM, Cohen M, Grines CL, Goodman S, et al. Enoxaparin vs unfractionated heparin in high risk patients with non-ST-segment elevation acute coronary syndromes managed with an intended early invasive strategy: primary results of the SYNERGY randomized trial. JAMA. 2004;292:45–54.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhynn J. Malloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malloy, R.J., Rimsans, J., Rhoten, M., Sylvester, K., Fanikos, J. (2018). Unfractionated Heparin and Low-Molecular-Weight Heparin. In: Lau, J., Barnes, G., Streiff, M. (eds) Anticoagulation Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-73709-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73709-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73708-9

  • Online ISBN: 978-3-319-73709-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics