Advertisement

mm-Wave Monolithic Integrated Sensor Nodes

  • Hao Gao
  • Marion Matters-Kammerer
  • Dusan Milosevic
  • Peter G. M. Baltus
Chapter
  • 592 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter presents the analysis, implementation, and measurement of two fully integrated mm-wave temperature sensor nodes with on-chip antennas. These two sensor nodes provide two solutions for integrating a sensor node with on-chip antenna(s). The first solution contains two on-chip antennas, one for Tx and one for Rx, in which Tx/Rx have separate antennas. The second solution is a one on-chip antenna solution, in which the on-chip antenna is reused by Tx/Rx through an RF switch. These sensor nodes are implemented in 65 nm CMOS technology. The first sensor node contains a monopole antenna at 71 GHz for RF power harvesting, a storage capacitor array, an End-of-Burst monitor, a temperature sensor, and an ultra-low-power transmitter at 79 GHz. At 71 GHz, the RF to DC converter achieves a power conversion efficiency of 8% for 5 dBm input power. The second sensor node contains an integrated antenna, an RF switch, an on-chip wireless power receiver, and a temperature-correlated ultra-low-power transmitter. It measures only 1.83 mm2 in 65 nm CMOS and weighs 1.6 mg. With the on-chip 30/65 GHz dual-frequency antenna and a three-stage inductor-peaked rectifier, the node can be wirelessly charged to 1.2 V. The output frequency of the temperature-correlated transmitter varies from 78.92 to 78.98 GHz, with a slope of 1.4 MHz/C.

References

  1. 1.
    F. Kocer, M. Flynn, A new transponder architecture with on-chip ADC for long-range telemetry applications. IEEE J. Solid-State Circuits 41(5), 1142–1148 (2006)CrossRefGoogle Scholar
  2. 2.
    H. Gao, Y. Wu, M. Matters-Kammerer, J.-P. Linnartz, A. van Roermund, P. Baltus, System analysis and energy model for radio-triggered battery-less monolithic wireless sensor receiver, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), May 2013, pp. 1572–1575Google Scholar
  3. 3.
    Y. Yu, P. Baltus, A. van Roermund, A. de Graauw, E. van der Heijden, M. Collados, C. Vaucher, A 60 GHz digitally controlled RF-beamforming receiver front-end in 65 nm CMOS, in IEEE Radio Frequency Integrated Circuits Symposium, 2009. RFIC 2009, June 2009, pp. 211–214Google Scholar
  4. 4.
    Y. Wu, J. Linnartz, H. Gao, P. Baltus, J. Bergmans, System study of a 60 GHz wireless-powered monolithic sensor system, in 2011 8th International Conference on Information, Communications and Signal Processing (ICICS), December 2011, pp. 1–5Google Scholar
  5. 5.
    U. Johannsen, A. Smolders, R. Mahmoudi, J. Akkermans, Substrate loss reduction in antenna-on-chip design, in IEEE Antennas and Propagation Society International Symposium, 2009. APSURSI ’09, June 2009, pp. 1–4Google Scholar
  6. 6.
    G. Papotto, F. Carrara, A. Finocchiaro, G. Palmisano, A 90 nm CMOS 5 Mb/s crystal-less RF transceiver for RF-powered WSN nodes, in 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), February 2012, pp. 452–454Google Scholar
  7. 7.
    H. Reinisch, M. Wiessflecker, S. Gruber, H. Unterassinger, G. Hofer, M. Klamminger, W. Pribyl, G. Holweg, A 7.9 μw remotely powered addressed sensor node using EPC HF and UHF RFID technology with − 10.3 dBm sensitivity, in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), February 2011, pp. 454–456Google Scholar
  8. 8.
    S. Pellerano, J. Alvarado, Y. Palaskas, A mm-wave power-harvesting RFID tag in 90 nm CMOS. IEEE J. Solid-State Circuits 45(8), 1627–1637 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Gao, M.K. Matters-Kammerer, P. Harpe, D. Milosevic, A. van Roermund, J.P. Linnartz, P.G.M. Baltus, A 60-GHz energy harvesting module with on-chip antenna and switch for co-integration with ULP radios in 65-nm CMOS with fully wireless mm-wave power transfer measurement, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), June 2014, pp. 1640–1643Google Scholar
  10. 10.
    H. Gao, M. Matters-Kammerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roermund, P. Baltus, A 71 GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65 nm CMOS, in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2013, pp. 403–406Google Scholar
  11. 11.
    J.-H. Huang, J.-W. Wu, Y.-L. Chiou, C. Jou, A 24/60 GHz dual-band millimeter-wave on-chip monopole antenna fabricated with a 0.13-μm CMOS technology, in IEEE International Workshop on Antenna Technology, 2009. iWAT 2009, March 2009, pp. 1–4Google Scholar
  12. 12.
    B. Pan, Y. Li, G. Ponchak, M. Tentzeris, J. Papapolymerou, A low-loss substrate-independent approach for 60-GHz transceiver front-end integration using micromachining technologies. IEEE Trans. Microw. Theory Tech. 56(12), 2779–2788 (2008)CrossRefGoogle Scholar
  13. 13.
    J. He, Y.-Z. Xiong, Y.P. Zhang, Analysis and design of 60-GHz SPDT switch in 130-nm CMOS. IEEE Trans. Microw. Theory Tech. 60(10), 3113–3119 (2012)CrossRefGoogle Scholar
  14. 14.
    R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1990)Google Scholar
  15. 15.
    H. Gao, U. Johannsen, M.K. Matters-Kammerer, D. Milosevic, A.B. Smolders, A. van Roermund, P. Baltus, A 60-GHz rectenna for monolithic wireless sensor tags, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), May 2013, pp. 2796–2799Google Scholar
  16. 16.
    J.-P. Curty, M. Declercq, C. Dehollain, N. Joehl, Design and Optimization of Passive UHF RFID System (Springer, New York, 2007)Google Scholar
  17. 17.
    D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, Boston, 2003)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hao Gao
    • 1
  • Marion Matters-Kammerer
    • 1
  • Dusan Milosevic
    • 1
  • Peter G. M. Baltus
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations