Advertisement

State of the Art

  • Hao Gao
  • Marion Matters-Kammerer
  • Dusan Milosevic
  • Peter G. M. Baltus
Chapter
  • 580 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter studies trends and expectations in monolithic wireless sensor system design with respect to applications, technology evolution, and system design. Problems and opportunities are analyzed. In later chapters of this book, the ultra-low-power design concept is introduced that takes advantages of the expected opportunities in order to solve the anticipated problems.

References

  1. 1.
    N. Heidmann, N. Hellwege, D. Peters-Drolshagen, S. Paul, A. Dannies, W. Lang, A low-power wireless UHF/LF sensor network with web-based remote supervision – implementation in the intelligent container, in 2013 IEEE Sensors, pp. 1–4 (2013)Google Scholar
  2. 2.
    A. Humbert, B. Tuerlings, R. Hoofman, Z. Tan, D. Gravesteijn, M. Pertijs, C. Bastiaansen, D. Soccol, A low-power CMOS integrated sensor for CO2 detection in the percentage range, in 2013 Transducers Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers Eurosensors XXVII), pp. 1649–1652 (2013)Google Scholar
  3. 3.
    W.C. Brown, The history of power transmission by radio waves. IEEE Trans. Microwave Theory Tech. 32(9), 1230–1242 (1984)CrossRefGoogle Scholar
  4. 4.
    K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. (Wiley, New York, 2003)CrossRefGoogle Scholar
  5. 5.
    O. Mourad, P. Le Thuc, R. Staraj, P. Iliev, System modeling of the RFID contactless inductive coupling using 13.56 MHz loop antennas, in 2014 8th European Conference on Antennas and Propagation (EuCAP), pp. 2034–2038 (2014)Google Scholar
  6. 6.
    L. Tong, H. Zeng, F. Peng, A study of the self-coupling magnetic resonance coupled wireless power transfer, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3138–3142 (2015)Google Scholar
  7. 7.
    C.-Y. Yao, W.-C. Hsia, A − 21.2 dBm dual-channel UHF passive CMOS RFID tag design. IEEE Trans. Circuits Syst. Regul. Pap. 61(4), 1269–1279 (2014)Google Scholar
  8. 8.
    H. Gao, M. Matters-Kammerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roermund, P. Baltus, A 71 GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65 nm CMOS, in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 403–406 (2013)Google Scholar
  9. 9.
    B. Wang, H. Gao, M.K. Matters-Kammerer, P.G.M. Baltus, Interpolation based wideband beamforming architecture, in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017)Google Scholar
  10. 10.
    S. Pellerano, J. Alvarado, Y. Palaskas, A mm-wave power-harvesting RFID tag in 90 nm CMOS. IEEE J. Solid State Circuits 45(8), 1627–1637 (2010)CrossRefGoogle Scholar
  11. 11.
    H.-K. Chiou, I.-S. Chen, High-efficiency dual-band on-chip rectenna for 35- and 94-GHz wireless power transmission in 0.13- μm CMOS technology. IEEE Trans. Microwave Theory Tech. 58(12), 3598–3606 (2010)Google Scholar
  12. 12.
    J. Ryckaert, G. Van der Plas, V. De Heyn, C. Desset, B. Van Poucke, J. Craninckx, A 0.65-to-1.4 nJ/Burst 3-to-10 GHz UWB All-Digital TX in 90 nm CMOS for IEEE 802.15.4a. IEEE J. Solid-State Circuits 42(12), 2860–2869 (2007)Google Scholar
  13. 13.
    H. Gao, P. Baltus, Q. Meng, 2GSPS 6-bit ADC for UWB receivers, in 2010 International Symposium on Signals, Systems and Electronics, vol. 1, pp. 1–4 (2010)Google Scholar
  14. 14.
    A. Gerosa, S. Soldà, A. Bevilacqua, D. Vogrig, A. Neviani, An energy-detector for noncoherent impulse-radio UWB receivers. IEEE Trans. Circuits Syst. Regul. Pap. 56(5), 1030–1040 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Crepaldi, C. Li, K. Dronson, J. Fernandes, P. Kinget, An ultra-low-power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 226–227 (2010)Google Scholar
  16. 16.
    E. Lopelli, Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs, Ph.D Dissertation, Eindhoven University of Technology (2010)Google Scholar
  17. 17.
    M. Anis, M. Ortmanns, N. Wehn, Fully integrated UWB impulse transmitter and 402-to-405 MHz super-regenerative receiver for medical implant devices, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1213–1215 (2010)Google Scholar
  18. 18.
    M. Vidojkovic, S. Rampu, K. Imamura, P. Harpe, G. Dolmans, H. de Groot, A 500 mW 5 Mbps ULP super-regenerative RF front-end, in 2010 Proceedings of the ESSCIRC, pp. 462–465 (2010)Google Scholar
  19. 19.
    K. Finkenzeller, RFID Handbook (Wiley, New York, 2003)CrossRefGoogle Scholar
  20. 20.
    E.-H. Kim, K. Lee, J. Ko, An isolator-less CMOS RF front-end for UHF mobile RFID reader, in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 456–458 (2011)Google Scholar
  21. 21.
    N. Pletcher, S. Gambini, J. Rabaey, A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes, in 2007 IEEE Custom Integrated Circuits Conference, pp. 539–542 (2007)Google Scholar
  22. 22.
    S. Drago, D. Leenaerts, F. Sebastiano, L. Breems, K. Makinwa, B. Nauta, A 2.4 GHz 830pJ/bit duty-cycled wake-up receiver with − 82 dBm sensitivity for crystal-less wireless sensor nodes, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 224–225 (2010)Google Scholar
  23. 23.
    X. Huang, S. Rampu, X. Wang, G. Dolmans, H. de Groot, A 2.4 GHz/915 MHz 51 μW wake-up receiver with offset and noise suppression, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 222–223 (2010)Google Scholar
  24. 24.
    N. Pletcher, S. Gambini, J. Rabaey, A 52 μW wake-up receiver with – 72 dBm sensitivity using an uncertain-IF architecture. IEEE J. Solid-State Circuits 44(1), 269–280 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Gu, J. Stankovic, Radio-triggered wake-up capability for sensor networks, in Proceedings 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 2004, pp. 27–36 (2004)Google Scholar
  26. 26.
    F. Kerasiotis, A. Prayati, C. Antonopoulos, C. Koulamas, G. Papadopoulos, Battery lifetime prediction model for a WSN platform, in 2010 Fourth International Conference on Sensor Technologies and Applications (SENSORCOMM), pp. 525–530 (2010)Google Scholar
  27. 27.
    G. Papotto, F. Carrara, A. Finocchiaro, G. Palmisano, A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes. IEEE J. Solid-State Circuits 49(2), 335–346 (2014)CrossRefGoogle Scholar
  28. 28.
    N. Barroca, H.M. Saraiva, P.T. Gouveia, J. Tavares, L.M. Borges, F.J. Velez, C. Loss, R. Salvado, P. Pinho, R. Goncalves, N. BorgesCarvalho, R. Chavez-Santiago, I. Balasingham, Antennas and circuits for ambient RF energy harvesting in wireless body area networks, in 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 532–537 (2013)Google Scholar
  29. 29.
    K. Kaushik, D. Mishra, S. De, S. Basagni, W. Heinzelman, K. Chowdhury, S. Jana, Experimental demonstration of multi-hop RF energy transfer, in 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 538–542 (2013)Google Scholar
  30. 30.
    J. Olds, W. Seah, Design of an active radio frequency powered multi-hop wireless sensor network, in 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1721–1726 (2012)Google Scholar
  31. 31.
    W. Seah, J. Olds, Data delivery scheme for wireless sensor network powered by RF energy harvesting, in 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1498–1503 (2013)Google Scholar
  32. 32.
    A. Tomkins, R. Aroca, T. Yamamoto, S. Nicolson, Y. Doi, S. Voinigescu, A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link. IEEE J. Solid-State Circuits 44(8), 2085–2099 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Lee, Y. Chen, Y. Huang, A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly. IEEE J. Solid-State Circuits 45(2), 264–275 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Oncu, M. Fujishima, 49 mW 5 Gbit/s CMOS receiver for 60 GHz impulse radio. Electron. Lett. 45(17), 889–890 (2009)CrossRefGoogle Scholar
  35. 35.
    X. Li, P. Baltus, P. van Zeijl, D. Milosevic, A. van Roermund, A 70 GHz 10.2 mW self-demodulator for OOK modulation in 65-nm CMOS technology, in 2010 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hao Gao
    • 1
  • Marion Matters-Kammerer
    • 1
  • Dusan Milosevic
    • 1
  • Peter G. M. Baltus
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations