Skip to main content

Nonlinear Metamaterials and Metadevices

  • Chapter
  • First Online:
Functional Metamaterials and Metadevices

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 262))

  • 3454 Accesses

Abstract

Metamaterials have brought unique functionalities by allowing the engineering of the material parameters at the level of their elementary units (meta-atoms) to creating functional metadevices. One of the important developments in this field is the demonstration of many of the nonlinear effects known in nonlinear physics and nonlinear optics such as nonlinear self-action, parametric interactions, and frequency conversion, which will boost the development of various methods for achieving tunable, switchable, nonlinear, and sensing functionalities of metamaterials. The study of nonlinear effects in artificial media and engineering the nonlinear response of such media are crucially important for this progress. In the context of photonic integration, for instance, metamaterials promise pathways for light that are impossible in normal materials and offer new freedom in exploiting nonlinear processes. By incorporating nonlinear and tunable metamaterials, it will be possible to create functional metamaterials that display sensitive tuning and novel or enhanced nonlinear behavior. These materials will ultimately provide the basis of a revolutionary platform for optical processing. This chapter will give a brief review on the update progress of nonlinear metamaterials and inspired functional metadevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida E, Bitton O, Prior Y (2016) Nonlinear metamaterials for holography. Nat Commun 7:12533

    Article  Google Scholar 

  • Chen Z, Guo B, Yang Y, Cheng C (2014) Metamaterials-based enhanced energy harvesting: a review. Physica B 438:1–8

    Article  Google Scholar 

  • Czaplicki R, Husu H, Siikanen R, Mäkitalo J, Kauranen M, Laukkanen J, Lehtolahti J, Kuittinen M (2013) Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys Rev Lett 110:093902

    Article  Google Scholar 

  • de Ceglia D, Vincenti MA, Campione S, Capolino F, Haus JW, Scalora M (2014) Second-harmonic double resonance cones in dispersive hyperbolic metamaterials. Phys. Rev. B 89(7):075123

    Article  Google Scholar 

  • Decker M et al (2013) Dual-channel spontaneous emission of quantum dots in magnetic metamaterials. Nat Commun 4:2949

    Article  Google Scholar 

  • Hannam KE, Powell DA, Shadrivov IV, Kivshar YS (2012) Tuning the nonlinear response of coupled split-ring resonators. Appl Phys Lett 100:081111

    Article  Google Scholar 

  • Katko AR (2014) Functional metamaterials for nonlinear and active applications using embedded devices. PhD dissertation, Duke University

    Google Scholar 

  • Kivshar YS (2014) Tunable and nonlinear metamaterials: toward functional metadevices. Adv Nat Sci Nanosci Nanotechnol 5:013001

    Article  Google Scholar 

  • Kurs A, Moffatt R, Soljacic M (2010) Simultaneous mid-range power transfer to multiple devices. Appl Phys Lett 96(2010):044102

    Article  Google Scholar 

  • Lapine M, Shadrivov IV, Kivshar YS (2014) Colloquium: nonlinear metamaterials. Rev Mod Phys 86(3):1093–1123

    Article  Google Scholar 

  • Larouche S, Rose A, Smith DR (2015) A constitutive description of nonlinear metamaterials through electric, magnetic, and magnetoelectric nonlinearities. In: Shadrivov IV et al (eds) Nonlinear, tunable and active metamaterials. Springer International Publishing, Switzerland

    Google Scholar 

  • Maksymov I, Miroshnichenko A, Kivshar Y (2013) Cascaded four-wave mixing in tapered plasmonic nanoantenna. Opt Lett 38:79

    Article  Google Scholar 

  • Mattheakis M, Tsironis G, Kovanis V (2012) Luneburg lens waveguide networks. J Opt 14:114006

    Article  Google Scholar 

  • Minovich A et al (2012) Liquid crystal based nonlinear fishnet metamaterials. Appl Phys Lett 100:121113

    Article  Google Scholar 

  • Rosanov N, Vysotina N, Shatsev A, Shadrivov I, Powell D, Kivshar Y (2011) Discrete dissipative localized modes in nonlinear magnetic metamaterials. Opt Express 19:26500

    Article  Google Scholar 

  • Rose A, Huang D, Smith D (2011) Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys Rev Lett 107:063902

    Article  Google Scholar 

  • Segal N, Keren-Zur S, Hendler N, Ellenbogen T (2015) Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics 9:180–184

    Article  Google Scholar 

  • Seren HR et al (2016) Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials. Light: Science & Applications 5:e16078

    Article  Google Scholar 

  • Shadrivov I, Sukhorukov A, Kivshar Y, Zharov A, Boardman A, Egan P (2004) Nonlinear surface waves in left-handed materials. Phys Rev E 69:016617

    Article  Google Scholar 

  • Somerville WRC, Powell DA, Shadrivov IV (2011) Second harmonic generation with zero phase velocity waves. Appl Phys Lett 98:161111

    Article  Google Scholar 

  • Suchowski H, O’Brien K, Wong ZJ, Salandrino A, Yin X, Zhang X (2013) Phase mismatch–free nonlinear propagation in optical zero-index materials. Science 342:1223

    Article  Google Scholar 

  • Valev VK et al (2013) Nanostripe length dependence of plasmon-induced material deformations. Opt Lett 38(13):2256–2258

    Article  Google Scholar 

  • Zhang L-J, Chen L, Liang C-H (2008) Goos-Hänchen shift at the interface of nonlinear left-handed metamaterials. J ElectromagnWaves Appl 22:1031

    Article  Google Scholar 

  • Zhao X et al (2016) Nonlinear terahertz metamaterial perfect absorbers using GaAs. Photon Res 4(3):A16–A21

    Article  Google Scholar 

  • Zharov AA, Shadrivov IV, Kivshar YS (2003) Nonlinear properties of left-handed metamaterials. Phys Rev Lett 91:037401

    Article  Google Scholar 

  • Zheludev NI, Plum E (2016) Reconfigurable nanomechanical photonic metamaterials. Nat Nanotechnol 11:16–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tong, X.C. (2018). Nonlinear Metamaterials and Metadevices. In: Functional Metamaterials and Metadevices. Springer Series in Materials Science, vol 262. Springer, Cham. https://doi.org/10.1007/978-3-319-66044-8_9

Download citation

Publish with us

Policies and ethics