Skip to main content

Phytic Acid Biosynthesis and Transport in Phaseolus vulgaris: Exploitation of New Genomic Resources

  • Chapter
  • First Online:
The Common Bean Genome

Abstract

Although common bean has a good content in essential minerals, it also accumulates significant amounts of compounds that reduce its nutritional value by lowering nutrient bioavailability. Phytic acid, which is the major form of phosphorus stored in the seed, is one of such compounds, as, during gastro-intestinal passage, it binds trace elements and reduces their absorption, leading, under certain dietary circumstances, to mineral (mostly Fe, Zn, Ca) deficiencies. A major goal for grain crop improvement is the reduction of phytic acid content in the seed to improve micronutrient bioavailability, through the identification of low phytic acid (lpa) mutants. In common bean only one of such mutants has been described so far. Genes involved in phytic acid pathway and transport have been described in different species, including common bean. Recently, new genomic resources have become available for the common bean research community, thanks to the release of two whole genome sequences: the Andean G19833 and the Mesoamerican BAT93 genotypes. In this chapter we use the two common bean reference genomes to compare the sequences of genes involved or putatively involved in phytic acid synthesis and transport, some of them never reported in this species. Moreover, we discuss transcriptomic data of these genes, reported in different organs at different developmental stages for the Mesoamerican genotype. Finally, we discuss alternatives on how to exploit these new genomic resources to study and eventually manipulate phytic acid pathway and transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aragao F, Nogueira E, Tinoco M et al (2013) Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J Biotechnol 166:42–50

    Article  CAS  PubMed  Google Scholar 

  • Arellano J, Fuentes S, Castillo-Espana P et al (2009) Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell Tissue Org 96:11–18

    Article  CAS  Google Scholar 

  • Bilyeu KD, Zeng P, Coello P et al (2008) Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol 146:468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair M, Herrera A, Sandoval T et al (2012) Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Mol Breed 30:1265–1277

    Article  CAS  Google Scholar 

  • Blair M, Medina J, Astudillo C et al (2010) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Blair M, Sandoval T, Caldas G et al (2009) Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci 49:237–246

    Article  CAS  Google Scholar 

  • Broughton W, Hernandez G, Blair M et al (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Campion B, Glahn R, Tava A et al (2013) Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crops Res 141:27–37

    Article  Google Scholar 

  • Campion B, Sparvoli F, Doria E et al (2009) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Chiera J, Grabau E (2007) Localization of myo-inositol phosphate synthase (GmMIPS-1) during the early stages of soybean seed development. J Exp Bot 58:2261–2268

    Article  CAS  PubMed  Google Scholar 

  • Coelho C, Tsai S, Vitorello V (2005) Dynamics of inositol phosphate pools (tris-, tetrakis- and pentakisphosphate) in relation to the rate of phytate synthesis during seed development in common bean (Phaseolus vulgaris). J Plant Physiol 162:1–9

    Article  CAS  PubMed  Google Scholar 

  • CoGe website. https://genomevolution.org/CoGe/SearchResults.pl?s=20365. Accessed 29 April 2016

  • Fileppi M, Galasso I, Tagliabue G et al (2010) Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolus vulgaris L.). Mol Breed 25:453–470

    Article  CAS  Google Scholar 

  • Greenwood J, Gifford D, Bewley J (1984) Seed development in Ricinus communis cv Hale (astor bean). II. Accumulation of phytic acid in the developing endosperm and embryo in relation to the deposition of lipid, protein, and phosphorus. Can J Bot 62:255–261

    Article  CAS  Google Scholar 

  • Guzman-Maldonado S, Martinez O, Acosta-Gallegos J et al (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  CAS  Google Scholar 

  • HarvestPlus website, Iron beans. http://www.harvestplus.org/content/iron-beans. Accessed 29 April 2016

  • Joshi-Saha A, Reddy KS (2015) Repeat length variation in the 5’UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.). J Exp Bot 66:5683–5690

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Andaya C, Goyal S et al (2008a) The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet 117:769–779

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Andaya C, Newman J et al (2008b) Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet 117:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Tai T (2010) Genetic analysis of two OsLpa1-like genes in Arabidopsis reveals that only one is required for wild-type seed phytic acid levels. Planta 232:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Tai T (2011) Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Mol Genet Genomics 286:119–133

    Article  CAS  PubMed  Google Scholar 

  • Kuwano M, Mimura T, Takaiwa F et al (2009) Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J 7:96–105

    Article  PubMed  Google Scholar 

  • Laing W, Bulley S, Wright M et al (2004) A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Natl Acad Sci USA 101:16976–16981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leytem AB, Maguire RO (2007) Environmental implications of inositol phosphates in animal manures. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Wallingford, Oxfordshire, pp 150–168

    Chapter  Google Scholar 

  • Loewus FA, Murthy PPN (2000) myo-Inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Nagy R, Grob H, Weder B et al (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norazalina S, Norhaizan M, Hairuszah I et al (2010) Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats. Exp Toxicol Pathol 62:259–268

    Article  CAS  PubMed  Google Scholar 

  • Otegui M, Capp R, Staehelin L (2002) Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panzeri D, Cassani E, Doria E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Boy E, Wirth JP et al (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petry N, Egli I, Campion B et al (2013) Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr 143:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • PhylomedDB website. http://www.phylomedb.org/. Accessed 29 April 2016

  • Phytozome v11.0 website. https://phytozome.jgi.doe.gov/pz/portal.html. Accessed 29 April 2016

  • Porch T, Blair M, Lariguet P, Galeano C, Pankhurst C, Broughton W (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. J Am Soc Hortic Sci 134:348–355

    Google Scholar 

  • Raboy V (2001) Seeds for a better future: ‘low phytate’, grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochem 64:1033–1043

    Article  CAS  Google Scholar 

  • Raboy V (2007) The ABCs of low-phytate crops. Nat Biotechnol 25:874–875

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    Article  CAS  Google Scholar 

  • Raboy V, Cichy K, Peterson K et al (2014) Barley (Hordeum vulgare L.) low phytic acid 1-1: an endosperm-specific, filial determinant of seed total phosphorus. J Hered 105:656–665

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Ingvardsen C, Torp AM (2010) Mutations in genes controlling the biosynthesis and accumulation of inositol phosphates in seeds. Biochem Soc T 38:689–694

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schaart JG, van de Wiel CC, Lotz LA et al (2015) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449

    Google Scholar 

  • Schlemmer U, Frølich W, Prieto RM et al (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53(Suppl 2):S330–S375

    Article  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Hazebroek J et al (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Wu Y et al (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla V, Doyon Y, Miller J et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459: 437-U156

    Google Scholar 

  • Sparvoli F, Cominelli E (2014) Phytate transport by MRPs. In: Geisler M (ed) Plant ABC transporters. Springer, Berlin, Germany, vol 22, pp 19–38

    Google Scholar 

  • Sparvoli F, Cominelli E (2015) Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plants 4:728–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson-Paulik J, Bastidas R, Chiou S et al (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci USA 102:12612–12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Thompson M, Lin G et al (2007) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization. Plant Physiol 144:1278–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M et al (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    Article  CAS  PubMed  Google Scholar 

  • Sweetman D, Johnson S, Caddick S et al (2006) Characterization of an Arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (AtIPK1). Biochem J 394:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagashira Y, Shimizu T, Miyamoto M et al (2015) Overexpression of a gene involved in phytic acid biosynthesis substantially increases phytic acid and total phosphorus in rice seeds. Plants 4:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Buchner P, Yoshimoto N et al (2011) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:119

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torabinejad J, Donahue J, Gunesekera B et al (2009) VTC4 is a bifunctional enzyme that affects myo-inositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia H, Brearley C, Elge S et al (2003) Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional ArgR-Mcm1 transcription complex. Plant Cell 15:449–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Zhang X, Broughton S et al (2011) A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley. Funct Integr Genom 11:103–110

    Article  CAS  Google Scholar 

  • Yoshida K, Wada T, Koyama H et al (1999) Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol 119:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Yang W, Zhao Q et al (2016) Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genomics 17:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Liu Q, Ren X et al (2008) Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol Breed 22:603–612

    Article  CAS  Google Scholar 

  • Zhao H, Frank T, Tan Y et al (2016) Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol 211:926–939

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, USA, pp 97–166

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Dr. Walter Sanseverino (CRAG, Spain) and Dr. Salvador Capella-Gutiérrez (BIST, Spain; UPF, Spain; CBS Fungal Biodiversity Centre, The Netherlands) for their help with the use of database developed for BAT93 genome and Dr. Roberto Bollini for critical reading of the manuscript. This work was partially supported by CERES—“NewPearl” project, jointly funded by Fondazione Cariplo and Agropolis Fondation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleonora Cominelli or Francesca Sparvoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cominelli, E., Orozco-Arroyo, G., Sparvoli, F. (2017). Phytic Acid Biosynthesis and Transport in Phaseolus vulgaris: Exploitation of New Genomic Resources. In: Pérez de la Vega, M., Santalla, M., Marsolais, F. (eds) The Common Bean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-63526-2_8

Download citation

Publish with us

Policies and ethics