Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The equations of motion of a dynamical system in general are nonlinear. Since an analytic solution can only be found for some special cases, it is common practice to linearize these equations around a reference position, typically an equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications. Series on Stability, Vibration, and Control of Systems, vol. 13. Series A. World Scientific, Singapore (2003)

    Google Scholar 

  2. Müller, P.C.: Stabilität und Matrizen: Matrizenverfahren in der Stabilitätstheorie linearer dynamischer Systeme. Ingenieurwissenschaftliche Bibliothek. Springer, Berlin, Heidelberg, New York (1977)

    MATH  Google Scholar 

  3. Kuypers, F.: Klassische Mechanik, 10th edn. Wiley-VCH, Weinheim (2016)

    MATH  Google Scholar 

  4. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. University Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Chicone, C.: Ordinary Differential Equations with Applications. Texts in Applied Mathematics, vol. 34, 2nd edn. Springer, New York (2006)

    Google Scholar 

  6. Spelsberg-Korspeter, G.: Eigenvalue optimization against brake squeal: symmetry, mathematical background and experiments. J. Sound Vib. 331(19), 4259–4268 (2012)

    Article  Google Scholar 

  7. Jekel, D., Clerkin, E., Hagedorn, P.: Robust damping in self-excited mechanical systems. Proc. Appl. Math. Mech. 16(1), 695–696 (2016)

    Article  Google Scholar 

  8. Müller, P.C., Schiehlen, W.O.: Lineare Schwingungen: Theoretische Behandlung von mehrfachen Schwingern. Akademische Verlagsgesellschaft, Wiesbaden (1976)

    MATH  Google Scholar 

  9. Gasch, R., Knothe, K., Liebich, R.: Strukturdynamik: Diskrete Systeme und Kontinua, 2nd edn. Springer, Berlin, Heidelberg (2012)

    Book  Google Scholar 

  10. Arens, T., Hettlich, F., Karpfinger, C., Kockelkorn, U., Lichtenegger, K., Stachel, H.: Mathematik. Springer Spektrum, Berlin and Heidelberg (2015)

    Book  MATH  Google Scholar 

  11. Hochlenert, D.: Selbsterregte Schwingungen in Scheibenbremsen: Mathematische Modellbildung und aktive Unterdrückung von Bremsenquietschen. Berichte aus dem Maschinenbau. Shaker, Aachen (2006)

    Google Scholar 

  12. Kimball, A.L., Lovell, D.E.: Internal friction in solids. Phys. Rev. 30(6), 948–959 (1927)

    Google Scholar 

  13. Mezger, T.G.: Das Rheologie Handbuch: Für Anwender von Rotations- und Oszillations-Rheometern. Farbe-und-Lack-Bibliothek, 5th edn. Vincentz, Hannover (2016)

    Google Scholar 

  14. Neumark, S.: Concept of Complex Stiffness Applied to Problems of Oscillations with Viscous and Hysteretic Damping. Technical Report 3269, Aeronautical Research Council, London (1962)

    Google Scholar 

  15. Bert, C.W.: Material damping. J. Sound Vib. 29(2), 129–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stevenson, J.D.: Structural damping values as a function of dynamic response stress and deformation levels. Nucl. Eng. Des. 60(2), 211–237 (1980)

    Article  Google Scholar 

  17. Crandall, S.H.: The role of damping in vibration theory. J. Sound Vib. 11(1), 3–18 (1970)

    Article  MATH  Google Scholar 

  18. Woodhouse, J.: Linear damping models for structural vibration. J. Sound Vib. 215(3), 547–569 (1998)

    Article  MATH  Google Scholar 

  19. Antoulas, A.C., Sorensen, D.C., Gugercin, S.: A survey of model reduction methods for large-scale systems. Contemp. Math. 280, 193–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qu, Z.-Q.: Model Order Reduction Techniques: With Applications in Finite Element Analysis. Springer, London (2004)

    Book  MATH  Google Scholar 

  21. Ouyang, H., Mottershead, J.E., Cartmell, M.P., Friswell, M.I.: Friction-induced parametric resonances in discs: effect of a negative friction-velocity relationship. J. Sound Vib. 209(2), 251–264 (1998)

    Article  Google Scholar 

  22. Hetzler, H.: Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel des Bremsenquietschens. Schriftenreihe des Instituts für Technische Mechanik, vol. 8. Univ.-Verl. Karlsruhe, Karlsruhe (2008)

    Google Scholar 

  23. Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. Z. Angew. Math. Mech. 83(8), 524–534 (2003)

    Article  MATH  Google Scholar 

  24. Sinou, J.-J., Jézéquel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Euro. J. Mech. A Solids 26(1), 106–122 (2007)

    Article  MATH  Google Scholar 

  25. Massi, F., Baillet, L., Giannini, O., Sestieri, A.: Brake squeal: linear and nonlinear numerical approaches. Mech. Syst. Signal Process. 21(6), 2374–2393 (2007)

    Article  Google Scholar 

  26. Sinou, J.-J.: Transient non-linear dynamic analysis of automotive disc brake squeal—on the need to consider both stability and non-linear analysis. Mech. Res. Commun. 37(1), 96–105 (2010)

    Article  MATH  Google Scholar 

  27. Spelsberg-Korspeter, G., Hochlenert, D., Hagedorn, P.: Non-linear investigation of an asymmetric disk brake model. Proc. IMechE Part C: J. Mech. Eng. Sci. 225(10), 2325–2332 (2011)

    Article  MATH  Google Scholar 

  28. Ouyang, H., Nack, W.V., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1(3/4), 207–231 (2005)

    Article  Google Scholar 

  29. Wagner, A.: Avoidance of brake squeal by a separation of the brake disc’s eigenfrequencies: a structural optimization problem. Forschungsbericht, vol. 31. Studienbereich Mechanik, Darmstadt (2013)

    Google Scholar 

  30. Spelsberg-Korspeter, G.: Breaking of symmetries for stabilization of rotating continua in frictional contact. J. Sound Vib. 322(4–5), 798–807 (2009)

    Article  Google Scholar 

  31. Schlagner, S., von Wagner, U.: Evaluation of automotive disk brake noise behavior using piezoceramic actuators and sensors. Proc. Appl. Math. Mech. 7(1), 4050031–4050032 (2007)

    Article  Google Scholar 

  32. Jekel, D., Hagedorn, P.: Stability of weakly damped MDGKN-systems: the role of velocity proportional terms. Z. Angew. Math. Mech. (1–8) (2017)

    Google Scholar 

  33. von Wagner, U., Hochlenert, D., Hagedorn, P.: Minimal models for disk brake squeal. J. Sound Vib. 302(3), 527–539 (2007)

    Article  Google Scholar 

  34. Sinou, J.-J., Jézéquel, L.: On the stabilizing and destabilizing effects of damping in a non-conservative pin-disc system. Acta Mech. 199(1–4), 43–52 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Hendrik Wehner .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Wehner, JH., Jekel, D., Sampaio, R., Hagedorn, P. (2018). Theoretical Background. In: Damping Optimization in Simplified and Realistic Disc Brakes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62713-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62713-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62712-0

  • Online ISBN: 978-3-319-62713-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics