Skip to main content

Bioactivity and Botanical Origin of Austroplebeia and Tetragonula Australian Pot-Pollen

  • Chapter
  • First Online:
Pot-Pollen in Stingless Bee Melittology

Abstract

Antibacterial properties, antioxidant activity, and bioactive components were measured in ethanolic and methanolic extracts of pot-pollen from Australian stingless bees (Meliponini) Austroplebeia australis, Tetragonula carbonaria, and Tetragonula hockingsi. Tetragonula hockingsi pot-pollen presented the highest flavonoid, polyphenol, and protein concentrations in both ethanolic and methanolic extracts. The antioxidant activity was positively correlated with the polyphenol content. All three pot-pollen extracts were active against both Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa), with lower minimum inhibitory concentration (MIC) values found in ethanolic extracts than in methanolic extracts. Ethanolic extracts of Tetragonula hockingsi pot-pollen showed the lowest MIC values. A palynological study identified the botanical origin of Australian pot-pollen. We suggest pot-pollen is a food that increases the value of stingless bee products in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida-Muradian L, Pamplona LC, Coimbra S, Barth OM. 2005. Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis 18: 105-111.

    Article  CAS  Google Scholar 

  • Altay A, Sagdicoglu Celep G, Yaprak AE, Basköse I, Bozoglu F. 2016. Glassworts as possible anticancer agents against human colorectal adenocarcinoma cells with their nutritive, antioxidant and phytochemical profiles. Chemical Biodiversity Oct 4. doi: 10.1002/cbdv.201600290.

    Article  CAS  Google Scholar 

  • Andrews JM. 2001. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy 48: 5–16.

    Article  CAS  PubMed  Google Scholar 

  • Asafova N, Orlov B, Kozin R, 2001. Physiologically Active Bee Products. YA Nikolaev; Nizhny Novgorod University, Russia. 221 pp.

    Google Scholar 

  • Atwe SU, Ma Y, Gill HS. 2014. Pollen grains for oral vaccination. Journal of Control Release 194: 45–52.

    Article  CAS  Google Scholar 

  • Azmi WA; Zulqurnain NS; Ghazi R. 2015. Melissopalynology and foraging activity of stingless bees, Lepidotrigona terminata (Hymenoptera: Apidae) from an apiary in Besut, Terengganu. Journal of Sustainability Science and Management 10: 27-35.

    Google Scholar 

  • Bárbara MS, Machado CS, Sodré GS, Dias LG, Estevinho LM, Carvalho CAL. 2008. Microbiological assessment, nutritional characterization and phenolic compounds of bee pollen from Melipona mandacaia Smith, 1983. Molecules. 20: 12525-12544.

    Article  CAS  Google Scholar 

  • Bárbara MS, Machado CS, Sodré GS, Dias LG, Estevinho LM, de Carvalho CA. 2015. Microbiological assessment, nutritional characterization and phenolic compounds of bee pollen from Melipona mandacaia Smith, 1983. Molecules 20: 12525-12544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth OM. 2004. Melissopalynology in Brazil: a review of pollen analysis of honeys, propolis and pollen loads of bees. Sciencia Agricola 61: 342-350.

    Article  Google Scholar 

  • Barth OM, Barros MA, Freitas FO. 2009. Análise palinológica em amostras arqueológicas de geoprópolis do vale do rio Peruaçu, Januária, Minas Gerais, Brasil. Arquivos do Museu de História Natural e Jardim Botânico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 19: 277-290.

    Google Scholar 

  • Bartra J, Sastre J, del Cuvillo A, Montoro J, Jáuregui I, Dávila I, Ferrer M, Mullol J, Valero A. 2009. From polinosis to digestive allergy. Journal of Investigative Allergology and Clinical Immunology 19: 3-10.

    Google Scholar 

  • Basim E, Basim HS, Özcan M. 2006. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engeniering 77: 992–996.

    Article  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by standardized single disk method. American Journal of Clinical Pathology 45: 493-496.

    Article  CAS  PubMed  Google Scholar 

  • Bazlen K. 2000. Charakterisierung von Honigen stachelloser Bienen aus Brasilien. Thesis. Faculty of Biology, Eberhard-Karl University of Tübingen. 141 pp.

    Google Scholar 

  • Brudzynski K, Abubaker K, Miotto D. 2012. Unraveling a mechanism of honey antibacterial action: polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation. Food Chemistry 133: 329-336.

    Article  CAS  PubMed  Google Scholar 

  • Callejo A, Sanchís ME, Armentia A, Moneoa I, Fernández A. 2002. A new pollen–fruit cross-reactivity. Allergy 57: 1088–1089.

    Article  CAS  PubMed  Google Scholar 

  • Campos MGR, Bogdanov S, Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F. 2008. Pollen composition and standardisation of analytical methods. Journal of Apicultural Research 47: 156-163.

    Article  Google Scholar 

  • Campos MGR, Frigerio C, Lopes J, Bogdanov S. 2010. What is the future of bee pollen? Journal of ApiProduct and Apimedical Science. 2: 131-144.

    Article  Google Scholar 

  • Carpes ST, Begnini R, De Alencar SM, Masson ML. 2007. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência e Agrotecnología 31: 1818-1825.

    Article  CAS  Google Scholar 

  • Cocan O, Marghitas LA, Dezmirean D, Laslo L. 2005. Composition and biological activities of bee pollen: review. Bulletin of the University of Agricultural Science and Veterinary Medicine 61: 221-226.

    Google Scholar 

  • Da Silva IA, Silva TM, Camara CA, Queiroz N, Magnani M, Novais JS, Soledade LE, Lima Ede O, de Souza AL, de Souza AG. 2013. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chemistry 141: 3552-3558.

    Article  CAS  PubMed  Google Scholar 

  • De Novais JS, Garcez ACA, Absy ML, Santos FAR. 2015. Comparative pollen spectra of Tetragonisca angustula (Apidae, Meliponini) from the Lower Amazon (N Brazil) and caatinga (NE Brazil). Apidologie 46: 417-431.

    Article  Google Scholar 

  • Denisow B, Denisow-Pietrzyk M. 2016. Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture. 96: 4303-4309.

    Article  CAS  PubMed  Google Scholar 

  • Edlund AF, Swanson R, Presuss D. 2004. Pollen and stigma structure and function: The role of diversity in pollination. The Plant Cell 16: 84-97.

    Article  Google Scholar 

  • Erkmen O, Ozcan MM. 2008. Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic foodrelated microorganisms. Journal of Medicinal Food 11: 587-592.

    Article  CAS  PubMed  Google Scholar 

  • Fatrcová-Šramková K, Nôžková J, Kačániová M, Máriássyová M, Rovná K, Stričík M. 2013. Antioxidant and antimicrobial properties of monofloral bee pollen. Journal of Environmental Science and Health B. 48: 133-138.

    Article  CAS  Google Scholar 

  • Feás X, Vázquez-Tato MP, Estevinho L, Seija JA, Iglesias A. 2012. Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 17: 8359-8377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gegotek A, Nikliński J, Žarković N, Žarković K, Waeg G, Łuczaj W, Charkiewicz R, Skrzydlewska E. 2016. Lipid mediators involved in the oxidative stress and antioxidant defense of human lung cancer cells. Redox Biology 9: 210-219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graikou K, Kapeta S, Aligiannis N, Sotiroudis G, Chondrogianni N, Gonos E, Chinou I. 2011.Chemical analysis of Greek pollen: Antioxidant, antimicrobial and proteasome activation properties. Chemistry Central Journal 5: 5-13.

    Article  Google Scholar 

  • Halliwell B, Gutteridge J, Aruoma O. 1987. The deoxyribose method:a simple test-tube assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry 165: 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Heard TA. 1994. Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers. Journal of Apicultural Research 33: 191-198.

    Article  Google Scholar 

  • Ishikawa Y, Tokura T, Nakano N, Hara M, Niyonsaba F, Ushio H, Yamamoto Y, Tadokoro T, Okumura K, Ogawa H. 2008. Inhibitory effect of honeybee-collected pollen on mast cell degranulation in vivo and in vitro. Journal of Medicinal Food 11: 14–20.

    Article  CAS  PubMed  Google Scholar 

  • Kacániová M, Vuković N, Chlebo, Haščík P, Rovná K, Cubon J, Dżugan M, Pasternakiewicz A. 2012. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Archives of Biological Science 64: 927-934.

    Article  Google Scholar 

  • Ketkar SS, Rathore AS, Lohidasan S, Rao L, Paradkar AR, Mahadik KR. 2014. Investigation of the nutraceutical potential of monofloral Indian mustard bee pollen. Journal of Integrative Medicine 12: 379-389.

    Article  PubMed  Google Scholar 

  • Komosinska-Vassev K, Olczyk P, Kazmierczak J, Mencner L, Olczyk K. 2015. Bee Pollen: Chemical Composition and Therapeutic Application. Evidence-Based Complementary and Alternative Medicine 1-6 pp. http://dx.doi.org/10.1155/2015/297425 (24.07.2016).

    Article  Google Scholar 

  • Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. 2001. Method for measurement of antioxidant activity in human fluids. Journal of Clinical Pathology 54: 356–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz M, Tavsanli NG, Ozcelik H. 2016. Use of complementary and alternative medicine and quality of life of cancer patients. Holistic Nursing Practice March/April: 88-95.

    Google Scholar 

  • Kostic AZ, Barac MB, Stanojevic SP, Milojkovic-Opsenica DM, Tesic ZL, Sikoparija, B, Radisik P, Prentovic M, Pesic MB. 2015. Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT - Food Science and Technology 62: 301-309.

    Article  CAS  Google Scholar 

  • Kustiawan PM, Puthong S, Arung ET and Chanchao C. 2014. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pacific Journal of Tropical Biomedicine 4: 549-556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalhmangaihi R, Ghatak S, Laha R, Gurusubramanian G, Kumar NS. 2014. Protocol for optimal quality and quantity pollen DNA isolation from honey samples. Journal of Biomolecular Techniques 25: 92-95.

    PubMed  PubMed Central  Google Scholar 

  • Lloyd-Prichard D, Lucas S, Roberts T, Haberle S. 2016. Assessment of pollen assemblages from the hives of Tetragonula carbonaria for the presence of the threatened species Grevillea parviflora subsp. parviflora. Journal of Pollination Ecology 18: 23-30. Tetragonula carbonaria Grevillea parviflora … parviflora.

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265-275.

    PubMed  CAS  Google Scholar 

  • LeBlanc BW, Davis OK, Boue S, DeLucca A, Deeby T. Antioxidant activity of Sonoran Desert bee pollen. 2009. Food Chemistry 115: 1299-305.

    Article  CAS  Google Scholar 

  • Luz CFP, Barth OM. 2012. Pollen analysis of honey and beebread derived from Brazilian mangroves. Revista Brasileira de Botânica 35: 79-85.

    Google Scholar 

  • Massaro CF, Shelley D, Heard TA, Brooks P. 2014. In vitro antibacterial phenolic extracts from ‘sugarbag’ pot-honeys of Australian stingless bees (Tetragonula carbonaria). Journal of Agricultural and Food Chemistry 62: 12209-12217.

    Article  CAS  PubMed  Google Scholar 

  • Massaro CF, Smyth TJ, Smyth WF, Heard TA, Leonhardt SD, Katouli M, Wallace HM, Brooks P. 2015. Phloroglucinols from anti-microbial deposit-resins of Australian stingless bees (Tetragonula carbonaria). Phytotherapy Research 29: 48-58.

    Article  CAS  PubMed  Google Scholar 

  • Morkunas I, Formela M, Marczak L, Stobiecki M, Bednarski W. 2013. The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi. Protoplasma 250: 63-75.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Ishiyama K, Sheng H, Ikai H, Kanno T, Niwano Y. 2015. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria Journal of Agriculture and Food Chemistry 63: 7707-7713.

    Article  CAS  Google Scholar 

  • Nurdianah HF, Ahmad Firdaus AH, Eshaifol Azam O, Wan Adnan WO. 2016. Antioxidant activity of bee pollen ethanolic extracts from Malaysian stinglessbee measured using DPPH-HPLC assay. International Food Research Journal 23: 403-405.

    CAS  Google Scholar 

  • Oliveira-Abreu C, Hilário SD, Luz CFP 2014. Pollen and néctar foraging by Melipona quadrifasciata anthidioides Lepeletier (Hymenoptera: Apidae: Meliponini) in natual habitat. Sociobiology 61: 441-448.

    Article  Google Scholar 

  • Pascoal A, Rodrigues S, Texeira A, Feás X, Estevinho LM. 2014. Biological activities of commercial bee pollen: review. Food Chemistry and Toxicology 63: 233-239.

    Article  CAS  Google Scholar 

  • Patton T, Barrett J, Brennan J, Moran N. 2006. Use of spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. Journal of Microbiological Methods 64: 84–95.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pérez EM, Vit P, Rivas E, Sciortino R, Sosa A, Tejada D, Rodríguez-Malaver AJ. 2012. Antioxidant activity of four colour fractions of bee pollen from Mérida, Venezuela. Archivos Latinoamericanos de Nutrición 62: 375-380.

    PubMed  Google Scholar 

  • Ramalho M; Kleinert-Giovannini A; Imperatriz-Fonseca VL. 1990. Important bee plants for stingless bees (Melipona and Trigonini) and Africanised honeybees (Apis mellifera) in Neotropical habitats: a review. Apidologie 21: 469-488.

    Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity in improved ABTS radical cation decolorization assay. Free Radical in Biology and Medicine 26: 1231-1237.

    Article  CAS  Google Scholar 

  • RIRDC Publication, 2015, 14/057. Honey bee and pollination program, five year research, developmentat and extension plan, 2014/15 – 2018/19.

    Google Scholar 

  • Silva TM, Camara CA, Lins AC, Agra Mde F, Silva EM, Reis IT, Freitas BM. 2009. Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees Melipona rufiventris (Uruçu-amarela). Anais da Academia Brasileira de Ciências 81: 173-178.

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Sharma P, Kumar A, Chadha P, Kaur R, Kaur A. 2016. Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. Journal of Ethnopharmacology 194: 450-456.

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152–178.

    Article  CAS  Google Scholar 

  • Somerville DC. 2005. Lipid content of honey bee-collected pollen from south-east Australia. Australian Journal of Experimental Agriculture 45: 1659.

    Article  CAS  Google Scholar 

  • Somerville DC, Nicol HI. 2006. Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Animal Production Science 46: 141-149.

    Article  CAS  Google Scholar 

  • Szczsna T. 2006. Protein content amino acid composition of bee-collected pollen from selected botanical origins. Journal of Apicultural Research 50: 81-90.

    Google Scholar 

  • Tan HT, Rahman RA, Gan SH, Halim AS, Hassan SA, Sulaiman SA, Kirnpal-Kaur B. 2009. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. Complementary and Alternative Medicine 9: 34-39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari HK, Sapkota D, Das AK, Sen MR. 2009. Assessment of different tests to detect methicillin resistant Staphylococcus aureus Southeast Asian Journal of Tropical Medicine Public Health 40: 801-806.

    PubMed  Google Scholar 

  • Tomás-Barberán FA, Truchado P, Ferreres F. 2013. Flavonoids in stingless-bee and honey-bee honeys. pp. 461-474. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer; New York, USA. 654 pp.

    Chapter  Google Scholar 

  • Vit P, Ricciardelli D’Albore G. 1994. Palinología comparada en miel y polen de abejas sin aguijón (Hymenoptera: Apidae: Meliponinae) de Venezuela. pp. 121-132. In Mateu Andrés I, Dupré Ollivier M, Güemes Heras J, Burgaz Moreno ME, eds. ME. X Simposio de Palinología. Trabajos de Palinología Básica y Aplicada. Universitat de Valencia; Valencia, España., Septiembre. pp. 313.

    Google Scholar 

  • Vit P, Santiago B, Pedro SRM, Peña-Vera M, Pérez-Pérez E. 2016. Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture 28: 78-84.

    Article  Google Scholar 

  • Woisky RG, Salatino A. 1998. Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apiculture Research 37: 99-105.

    Article  CAS  Google Scholar 

  • Yao L, Jiang Y, D'Arcy B, Singanusong R, Datta N, Caffin N, Raymont K. 2004. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. Journal of Agricultural and Food Chemistry 52: 210-214.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The pot-pollen samples were freshly collected from local stingless beehives and kindly donated by Mr. Robert Luttrell, Highvale, Queensland, Australia. Special thanks to the support of ZG-AVA-FA-01-98-01 from the Council of Development of Scientific, Humanistic, Technological and Artistic, at Universidad de Los Andes; to Dr. F. Huq for sending pot-pollen from Australia to Brazil for palynological analysis; to Massimo Vit for his hospitality during two short stages of P. Vit at USYD in Sydney; and to the National Counsel of Technological and Scientific Development “Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq” for a research fellowship. Dr. DW Roubik carefully commented and improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Vit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Pérez, E., Sulbarán-Mora, M., Barth, O.M., Flavia Massaro, C., Vit, P. (2018). Bioactivity and Botanical Origin of Austroplebeia and Tetragonula Australian Pot-Pollen. In: Vit, P., Pedro, S., Roubik, D. (eds) Pot-Pollen in Stingless Bee Melittology. Springer, Cham. https://doi.org/10.1007/978-3-319-61839-5_27

Download citation

Publish with us

Policies and ethics