Skip to main content

Molecular, Neuronal, and Behavioral Mechanism of Communication Among Insect Species: A Review

  • Chapter
  • First Online:
Trends in Insect Molecular Biology and Biotechnology

Abstract

Insects are the largest group of invertebrates having unique modalities of communication among members of the same species. Conspecific communication among insect species occurs mainly through visual, tactile, chemical, and behavioral changes. A number of studies on different insect models have been conducted by several researchers to understand the molecular, neuronal, and behavioral mechanism underlying communication among conspecifics. Though huge volume of research has been done to understand the mechanistic details of insect communication, there are a number of answered questions which require special attention. Understanding mechanisms of communication among insects has a number of potential applications in devising appropriate and sustainable control and/or management of insect population in the crop field. Pheromones are being used to effectively manage insect population since long before. Genetic basis of odor detections and interpretation of different odorants by insect species that carry message for different purposes involves several signaling receptors including G-protein-coupled receptor (GPCR) and second messenger signaling. Neuronal firing pattern following exposure to a pheromonal compound explains partially the mechanism of conspecific message delivery conspecific. However, how limited number of odorant-binding proteins that detect large spectrum of odorant species and differentiate as a different signal is not yet understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Avalos D, Wajnberg E, Oliveira PS, Leal I, Farina M, Esquivel DMS (1999) Isolation of magnetic nanoparticles from Pachycondyla marginata ants. J Exp Biol 202:2687–2692

    PubMed  Google Scholar 

  • Anderson JB, Vander Meer RK (1993) Magnetic orientation in the fire ant, Solenopsis invicta. Naturwissenschaften 80:568–570

    Article  Google Scholar 

  • Anton S (1996) Central olfactory pathways in mosquitoes and other insects. Ciba Found Symp 200:184–192. discussion 192–196, 226–232

    CAS  PubMed  Google Scholar 

  • Aquiloni L, Tricarico E, SpringerLink (Online service) Springer International Publishing (2015) In: Aquiloni L, Tricarico E (eds) Social recognition in invertebrates the knowns and the unknowns. Springer International Publishing, Berlin

    Chapter  Google Scholar 

  • Banks AN, Srygley RB (2003) Orientation by magnetic field in leaf-cutter ants, Atta Colombica (hymenoptera: Formicidae). Ethology 109:835–846

    Article  Google Scholar 

  • Blaustein DN, Simmons RB, Burgess MF, Derby CD, Nishikawa M, Olson KS (1993) Ultrastructural localization of 5’AMP odorant receptor sites on the dendrites of olfactory receptor neurons of the spiny lobster. J Neurosci 13:2821–2828

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Tillman JA, Mpuru S, Seybold SJ (1998) The cuticle and cuticular hydrocarbons of insects: structure, function and biochemistry. In: Vander Meer RK, Breed M, Winston M, Espelie C (eds) Pheromone communication in social insects. Westview Press, Boulder, CO, pp 34–54

    Google Scholar 

  • Carde RT (2014) Defining attraction and aggregation pheromones: teleological versus functional perspectives. J Chem Ecol 40:519–520

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Williams NM, Rasmussen H, Thomson JD (1998) Navigation without vision: bumblebee orientation in complete darkness. Proc R Soc Lond B 266:45–50

    Article  Google Scholar 

  • Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:822–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in drosophila. Neuron 22:327–338

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477

    Article  CAS  PubMed  Google Scholar 

  • Dear TN, Boehm T, Keverne EB, Rabbitts TH (1991) Novel genes for potential ligand-binding proteins in subregions of the olfactory mucosa. EMBO J 10:2813–2819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker T, Revadi S, Mansourian S, Ramasamy S, Lebreton S, Becher PG, Angeli S, Rota-Stabelli O, Anfora G (2015) Loss of drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. Proc Biol Sci 282:20143018

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickens JC, Callahan FE, Wergin WP, Murphy CA, Vogt RG (1998) Odorant binding proteins of true bugs. Generic specificity, sexual dimorphism, and association with subsets of chemosensory sensilla. Ann N Y Acad Sci 855:306–310

    Article  CAS  PubMed  Google Scholar 

  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60:653–688

    Article  CAS  PubMed  Google Scholar 

  • Du G, Prestwich GD (1995) Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732

    Article  CAS  PubMed  Google Scholar 

  • Dweck HK, Ebrahim SA, Thoma M, Mohamed AA, Keesey IW, Trona F, Lavista-Llanos S, Svatos A, Sachse S, Knaden M et al (2015) Pheromones mediating copulation and attraction in drosophila. Proc Natl Acad Sci U S A 112:E2829–E2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eibl-Eibesfeldt I, Eibl-Eibesfeldt E (1967) Das Parasitenabwehren der Minima- Arbeiterinnen der Blattschneider-Ameise (Atta cephalotes). Z Tierpsychol 24:278–281

    CAS  PubMed  Google Scholar 

  • Ferguson SS, Downey WER, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    Article  CAS  PubMed  Google Scholar 

  • Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in drosophila pheromonal communication. Behav Genet 35:279–295

    Article  PubMed  Google Scholar 

  • Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351. discussion 352–353

    CAS  PubMed  Google Scholar 

  • Frisch K (1954) The dancing bees: an account of the life and senses of the honey bee, 1st edn. Springer-Verlag, Wien, pp XIV–183

    Book  Google Scholar 

  • Frisch K, Wenner AM, Johnson DL (1967) Honeybees: do they use direction and distance information provided by their dancers? Science 158:1072–1077

    Article  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein coupled receptors. Endocr Rev 21:90–113

    Article  CAS  PubMed  Google Scholar 

  • Gould JL (1980) The case for magnetic sensitivity in birds and bees (such as it is): surprising concentrations of magnetite in the tissues of some animals may explain their sensitivity to the earth’s magnetic field. Am Sci 68:256–267

    Google Scholar 

  • Graham LA, Davies PL (2002) The odorant-binding proteins of Drosophila melanogaster. Annotation and characterization of a divergent gene family. Gene 292:43–55

    Article  CAS  PubMed  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Haberer W, Steiger S, Müller JK (2014) Dynamic changes in volatile emissions of breeding burying beetles. Physiol Entomol 39:153–164

    Article  CAS  Google Scholar 

  • Hansson BS, Christensen TA (1999) Functional characteristics of the antennal lobe. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 125–161

    Chapter  Google Scholar 

  • Hickling R, Brown RL (2000) Analysis of acoustic communication by ants. J Acoust Soc Am 108:1920–1929

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  CAS  PubMed  Google Scholar 

  • Hölldobler B (1999) Multimodal signals in ant communication. J Comp Physiol 184A:129–141

    Google Scholar 

  • Imen S, Christian M, Virginie D, Colette R (2015) Intraspecific signals inducing aggregation in Periplaneta americana (Insecta: Dictyoptera). Environ Entomol 44:713–723

    Article  PubMed  Google Scholar 

  • Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ (1993) Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268:23735–23738

    CAS  PubMed  Google Scholar 

  • Kaissling K-E (1986) Temporal characteristics of pheromone receptor cell responses in relation to orientation behaviour of moths. In: Payne TL, Birchm MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Oxford University Press, Oxford, pp 193–200

    Google Scholar 

  • Kaissling K-E (1987) In: Colbow K (ed) R. H. Wright lectures on insect olfaction. Simon Fraser University, Burnaby, BC

    Google Scholar 

  • Kim MS, Repp A, Smith DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150:711–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger MJ, Ross KG (2002) Identification of a major gene regulating complex social behavior. Science 295:328–232

    Article  CAS  PubMed  Google Scholar 

  • Lebreton S, Grabe V, Omondi AB, Ignell R, Becher PG, Hansson BS, Sachse S, Witzgall P (2014) Love makes smell blind: mating suppresses pheromone attraction in drosophila females via Or65a olfactory neurons. Sci Rep 4:7119

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Liang X, Gong J, Yang Z, Zhang YH, Zhang JX, Rao Y (2011) Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in drosophila. Nat Neurosci 14:896–902

    Article  CAS  PubMed  Google Scholar 

  • Maïbèche-Coisné M, Sobrio F, Delaunay T, Lettere M, Dubroca J, Jacquin-Joly E, Nagnan-LeMeillour P (1997) Pheromone binding proteins of the moth mamestra brassicae: specificity of ligand binding. Insect Biochem Mol Biol 27:213–221

    Article  Google Scholar 

  • Maida R, Krieger J, Gebauer T, Lange U, Ziegelberger G (2000) Three pheromone binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea Pernyi. Eur J Biochem 267:2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Merrill CE, Riesgo-Escovar JR, Pitts RJ, Kafatos FC, Carlson JR, Zwiebel LJ (2002) Visual arrestins in olfactory pathways of drosophila and the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 99:1633–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelsen A, Kirchner WH, Andersen BB, Lindauer M (1986) The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. J Comp Physiol 158A:605–611

    Article  Google Scholar 

  • Michelsen A, Andersen BB, Kirchner WH, Lindauer M (1989) Honeybees can be recruited by a mechanical model of a dancing bee. Naturwissenschaften 76:277–280

    Article  Google Scholar 

  • Müller JK, Eggert A-K, Elsner T (2003) Nestmate recognition in burying beetles: the “breeder’s badge” as a cue used by females to distinguish their mates from male intruders. Behav Ecol 14:212–220

    Article  Google Scholar 

  • Murlis J, Willis MA, Cardé RT (2000) Spatial and temporal structures of pheromone plumes in fields and forests. Physiol Entomol 25:211–222

    Article  CAS  Google Scholar 

  • Nelson DR, Blomquist GJ (1995) Insect waxes. In: Hamilton RJ, Christie WW (eds) Waxes: chemistry, molecular biology and functions. The Oily Press, England, pp 1–90

    Google Scholar 

  • Nieh JC (2004) Recruitment communication in stingless bees (hymenoptera, Apidae, Meliponinae). Apidologie 35:159–182

    Article  Google Scholar 

  • Nikonov AA, Valiyaveettil JT, Leal WS (2001) A photoaffinity-labeled green leaf volatile compound “tricks” highly selective and sensitive insect olfactory receptor neurons. Chem Senses 26:49–54

    Article  CAS  PubMed  Google Scholar 

  • Nikonov AA, Peng G, Tsurupa G, Leal WS (2002) Unisex pheromone detectors and pheromone-binding proteins in scarab beetles. Chem Senses 27:495–504

    Article  CAS  PubMed  Google Scholar 

  • Pevsner J, Trifiletti R, Strittmatter SM, Synder SH (1985) Isolation and characterization of an olfactory receptor protein for odorant pyrazines. Proc Natl Acad Sci U S A 82:3050–3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikielny CW, Hasan G, Rouyer F, Rosbash M (1994) Members of a family of drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49

    Article  CAS  PubMed  Google Scholar 

  • Pilpel Y, Sosinsky A, Lancet D (1998) Molecular biology of olfactory receptors. Essays Biochem 33:93–104

    Article  CAS  PubMed  Google Scholar 

  • Pippig S, Andexinger S, Daniel K, Puzicha M, Caron MG, Lefkowitz RJ, Lohse MJ (1993) Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem 268:3201–3208

    CAS  PubMed  Google Scholar 

  • Plettner E, Lazar J, Prestwich EG, Prestwich GD (2000) Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962

    Article  CAS  PubMed  Google Scholar 

  • Roces F, Hölldobler B (1995) Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav Ecol Sociobiol 37:297–302

    Article  Google Scholar 

  • Roces F, Hölldobler B (1996) Use of stridulation in foraging leaf-cutting ants: mechanical support during cutting or short-range recruitment signal? Behav Ecol Sociobiol 39:293–299

    Article  Google Scholar 

  • Roces F, Tautz J (2001) Ants are deaf. J Acoust Soc Am 109:3080–3082

    Article  CAS  PubMed  Google Scholar 

  • Röhrig A, Kirchner WH, Leuthold RH (1999) Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect Soc 46:71–77

    Article  Google Scholar 

  • Rosengren R, Pamilo P (1978) Effect of winter timber felling on behaviour of foraging wood ants (Formica rufagroup) in early spring. Memorabilia Zool 29:143–155

    Google Scholar 

  • Sakurai T, Namiki S, Kanzaki R (2014) Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Physiol 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider D (1957) Elektrophysiologische untersuchungen von chemo- und mechanorezeptoren der antenne des seidenspinners Bombyx mori L. Z Vergl Physiol 40:8–41

    Article  Google Scholar 

  • Schneider D, Boeckh J (1962) Rezeptorpotential und nervenimpulse einzelner olfaktorischer sensillen der insektenantenne. Z Vergl Physiol 45:405–412

    Article  Google Scholar 

  • Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26

    Article  CAS  PubMed  Google Scholar 

  • Strader CD, Fong TM, Tota MR, Underwood D (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132

    Article  CAS  PubMed  Google Scholar 

  • Suh E, Bohbot JD, Zwiebel LJ (2014) Peripheral olfactory signaling in insects. Curr Opin Insect Sci 6:86–92

    Article  PubMed  PubMed Central  Google Scholar 

  • van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Insect hydrocarbons: biology, biochemistry and chemical ecology, vol 11. Cambridge University Press, Cambridge, pp 222–243

    Chapter  Google Scholar 

  • Vogt RG (1987) The molecular basis of pheromone reception: its influence on behavior. In: Prestwich GD, Blomquis GJ (eds) Pheromone biochemistry. Academic Press, New York, pp 385–431

    Google Scholar 

  • Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparison with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984

    Article  CAS  PubMed  Google Scholar 

  • Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Anderson DJ (2010) Identification of an aggression-promoting pheromone and its receptor neurons in drosophila. Nature 463:227–231

    Article  CAS  PubMed  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol 189:579–588

    Article  CAS  Google Scholar 

  • Wertheim B, Allemand R, Vet LEM, Dicke M (2006) Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on drosophila. Ecol Entomol 31:216–226

    Article  Google Scholar 

  • Wetzel CH, Behrendt H-J, Gisselmann G, Störtkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci 98:9377–9380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtasek H, Picimbon JF, Leal WS (1999) Identification and cloning of odorant binding proteins from the scarab beetle Phyllopertha diversa. Biochem Biophys Res Commun 263:832–837

    Article  CAS  PubMed  Google Scholar 

  • Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Yew JY, Chung H (2015) Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res 59:88–105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iswar Baitharu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baitharu, I., Shroff, S., Sahu, J.K. (2018). Molecular, Neuronal, and Behavioral Mechanism of Communication Among Insect Species: A Review. In: Kumar, D., Gong, C. (eds) Trends in Insect Molecular Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-61343-7_2

Download citation

Publish with us

Policies and ethics