Advertisement

Abstract

In this paper, we present a novel approach to compute 3D canonical forms which is useful for non-rigid 3D shape retrieval. We resort to using the feature space to get a compact representation of points in a small-dimensional Euclidean space. Our aim is to improve the classical Multi-Dimensional Scaling MDS algorithm to avoid the super-quadratic computational complexity. To this end, we compute the canonical form of the local geodesic distance matrix between pairs of a small subset of vertices in local feature patches. To preserve local shape details, we drive the mesh deformation by the local weighted commute time. When used as a spatial relationship between local features, the invariant properties of the Biharmonic distance improve the final results.

We evaluate the performance of our method by using two different measures: the compactness measure and the Haussdorf distance.

Keywords

3D canonical forms Multidimensional scaling 3D non-rigid shape Biharmonic distance 

References

  1. 1.
    Cox, M.A., Cox, T.F.: Multidimensional Scaling. Chapman and Hall, London/New York (1994)zbMATHGoogle Scholar
  2. 2.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Faloutsos, C., Lin, K.D.: A fast algorithm for indexing, data mining and visualisation of traditional and multimedia datasets. In: Proceedings of ACM SIGMOD, pp. 163–174 (1995)Google Scholar
  4. 4.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21, 8–10 (2005)CrossRefGoogle Scholar
  5. 5.
    Elad, A., Kimmel, R.: On bending invariant signatures for surface. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)CrossRefGoogle Scholar
  6. 6.
    Lian, Z., Godil, A., Xiao, J.: Feature-preserved 3d canonical form. Int. J. Comput. Vis. 102, 221–238 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, X.-L., Zha, H.: Contour canonical form: an efficient intrinsic embedding approach to matching non-rigid 3D objects. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, Article No. 31 (2012)Google Scholar
  8. 8.
    Pickup, D., Sun, X., Rosin, P.L., Martin, R.R.: Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval. Pattern Recognit. 48(8), 2500–2512 (2015)CrossRefGoogle Scholar
  9. 9.
    Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic distance. ACM Trans. Graph. (TOG) 29(3), 27 (2010)CrossRefGoogle Scholar
  10. 10.
    Gębal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1413 (2009)CrossRefGoogle Scholar
  11. 11.
    Mohamed, H.H., Belaid, S.: Algorithm BOSS (Bag-of-Salient local Spectrums) for non-rigid and partial 3D object retrieval. Neurocomputing 168, 790–798 (2015)CrossRefGoogle Scholar
  12. 12.
    Papadimitriou, C.H.: An algorithm for shortest-path motion in three dimensions. IPL 20, 259–263 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32(5), Article No. 152 (2013)Google Scholar
  14. 14.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Monographs in Computer Science. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95, 8431–8435 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24(3), 553–560 (2005)CrossRefGoogle Scholar
  17. 17.
    Pickup, D., et al.: SHREC 15 track: canonical forms for non-rigid 3D shape retrieval (2015)Google Scholar
  18. 18.
    Grinspun, E., Gingold, Y., Reisman, J., Zorin, D.: Computing discrete shape operators on general meshes. Eurograph. Comput. Graph. Forum 25(3), 547–556 (2006)CrossRefGoogle Scholar
  19. 19.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC 11 track: shape retrieval on non-rigid 3D watertight meshes. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, pp. 79–88 (2011)Google Scholar
  20. 20.
    Cheng, Z., Lian, Z., Aono, M., Hamza, A.B., Bronstein, A., Bronstein, M., Bu, S., Castellani, U., Cheng, S., Garro, V., Giachetti, A., Godil, A., Han, J., Johan, H., Lai, L., Li, B., Li, C., Li, H., Litman, R., Liu, X., Liu, Z., Lu, Y., Tatsuma, A., Ye, J.: Shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th Eurographics Workshop on 3D Object Retrieval, pp. 101–110 (2014)Google Scholar
  21. 21.
    Meshlabv1.3.0 (2011). http://meshlab.sourceforge.net

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.FSMUniversity of MonastirMonastirTunisia
  2. 2.ENITEl-Manar UniversityTunisTunisia

Personalised recommendations