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Abstract. In this paper, we present a novel approach to compute 3D
canonical forms which is useful for non-rigid 3D shape retrieval. We resort
to using the feature space to get a compact representation of points in a
small-dimensional Euclidean space. Our aim is to improve the classical
Multi-Dimensional Scaling MDS algorithm to avoid the super-quadratic
computational complexity. To this end, we compute the canonical form
of the local geodesic distance matrix between pairs of a small subset of
vertices in local feature patches. To preserve local shape details, we drive
the mesh deformation by the local weighted commute time. When used
as a spatial relationship between local features, the invariant properties
of the Biharmonic distance improve the final results.

We evaluate the performance of our method by using two different
measures: the compactness measure and the Haussdorf distance.

Keywords: 3D canonical forms · Multidimensional scaling · 3D non-
rigid shape · Biharmonic distance

1 Introduction

In the last few years, the recognition task of non-rigid 3D shapes, invariant to
object’s pose, becomes a significant challenge for modern shape retrieval meth-
ods. The review of algorithms for non-rigid 3D shape retrieval is mainly classi-
fied into algorithms employing local features, topological structures, isometric-
invariant global geometric properties, direct shape matching, and canonical
forms. In the last category, many authors proposed to transform each deformable
model into a canonical form invariant to the pose. This proposal allows the rigid
shape descriptors to be used in non-rigid shape retrieval.

The Multidimensional Scaling Method (MDS) is one of the most used meth-
ods for computing 3D canonical forms. However, the main challenge of the MDS
based methods remains the construction of canonical forms with well-preserved
features and with low time-complexity computation.

This paper introduces a novel canonical form based on multidimensional
scaling (MDS) by considering local interest points. Our main idea amounts to
partitioning the global MDS problem into a set of sub-problems and then to
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generating local 3D canonical forms of the original one. More specifically, fea-
ture points of the target model are first detected and then a set of local patches
is generated. Thereafter, these sub-parts are transformed into their 3D canoni-
cal sub-forms by solving nonlinear minimization problems. Assuming this solu-
tion enables the reduction of the high computational cost of geodesic distance
between each pair of vertices. Eventually, a spatial relationship constraint is
needed between partitions to obtain the final 3D canonical form.

The rest of the paper is organized as follows: In Sect. 2, we briefly present
MDS-based techniques. In Sect. 3, we establish the mathematical background of
the proposed method. Then, in Sects. 4 and 5, we detail our method and report
our experimental results.

2 MDS-Based Techniques

MDS is widely considered as an efficient tool to solve MDS problems. The basic
idea of MDS-based algorithms is to map the dissimilarity measure between a
pair of features, described in an initial feature space, into the distance between
the corresponding pair of points in a small-dimensional Euclidean space. In fact,
MDS maps each feature Yi, i = 1, ..., N to its corresponding point Xi, i = 1, ..., N
in a m-dimensional Euclidean space Rm by minimizing a given stress function:

ES(X) =
ΣN

i=1Σ
N
j=i+1ωi,j(dF (Yi, Yj) − dE(Xi,Xj))2

ΣN
i=1Σ

N
j=i+1(dF (Yi, Yj))2

(1)

where dF (Yi, Yj) is the dissimilarity between features Yi and Yj , dE(Xi,Xj) is
the Euclidean distance between points Xi and Xj in Rm, and wi,j is a weighting
coefficient. The difference between dF (Yi, Yj) and dE(Xi,Xj) plays the role of the
objective function, (also designated by stress function), ES(X) to be minimized.
To solve this non-convex minimization problem, many algorithms have already
been proposed. As standard optimization algorithm, we may mention Classical
MDS [1], Least Squares MDS [2], Fast MDS [3], Non-metric MDS [4], etc.

In 3D domain, the first computed canonical form is performed by Elad and
Kimmel [5]. The authors proposed using the least squares multidimensional scal-
ing to generate a canonical form for a given 3D mesh. Wherein the dissimilarity
measure between features is calculated by the geodesic distances. To improve the
quality of canonical forms, Lian et al. [6] created a feature preserving canonical
form by considering MDS embedding results as references and then naturally
deform the original meshes against them. Nevertheless, this method is sensi-
tive to topological errors, although it is quite robust against mesh segmentation
results. In addition, the methods suffer from the high computational time due to
the computation of geodesic distances between all pairs of vertices. To circum-
vent this difficulty, meshes are approximately simplified to 2000 vertices before
the MDS embedding procedure is applied. Nevertheless, this solution can affect
the quality of the mesh as well as its local features.
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More recent methods are based on local feature [7,8]. For instance, Pickup et al.
[8] have suggested a linear time complexitymethod for computing a canonical form.
Theauthorsmaximized thedistancebetweenpairs of detected featurepointswhilst
preserving the mesh’s edge lengths. This is achieved by using Euclidean distances
between pairs of a small subset of vertices. The same authors, proposed to perform
the unbending on the skeleton of the mesh, and use this to drive the deformation
of the mesh itself. They successfully saved computational time, and reduced dis-
tortion of local shape detail. However, this method is sensible to topological errors
that may corrupt the mesh.

3 Mathematical Background

The Classical MDS, proposed by Elad and Kimmel [5] is based on a square and
symmetric distance matrix DF defined by

DF =

⎡
⎢⎢⎢⎢⎣

d2F (Y1, Y1) . . . d2F (Y1, YN )
. . . . .
. . . . .
. . . . .

d2F (YN , Y1) . . . d2F (YN , YN )

⎤
⎥⎥⎥⎥⎦

(2)

where dF (Yi, Yj) is the geodesic distance between the pair Yi and Yj , computed
using the fast marching method [15] in the feature space. The inner product
matrix (i.e., the Gram matrix) GE is calculated in the embedded Euclidean
space by

GE = −1
2
JDFJ (3)

where
J =

1
N

11T (4)

where 1 denotes the N -one vector.
The Euclidean embedding of these distances is then computed using the

eigen-decomposition of the Gram matrix GE . So, the classical MDS minimizes
the following energy function, instead of the stress function ES(X):

ES1(X) = ‖Q(Λ − Λ)QT ‖2 (5)

where ‖•‖ denotes the Frobenieus norm of the squared matrix elements, Λm×m =
diag(λ1, λ2, ..., λm) are eigenvalues of GE ordered so that λ1 ≥ λ2 ≥ ...λk ≥ 0,
Q denotes the matrix having as columns the corresponding eigenvectors and m
is the dimension of the embedded Euclidean space.

The same authors [5] improved their results by suggesting a standard opti-
mization algorithm. The Least Squares technique uses the SMACOF (Scaling by
Maximizing a Convex Function) (Borg and Groenen [2]) algorithm to minimize
the following stress function ES(X):

ES(X) = ΣN
i=1Σ

N
j=i+1ωi,j(dF (Yi, Yj) − dE(Xi,Xj))2 (6)
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where N is the number of vertices, the wi,j ’s are weighting coefficients, dF (Yi, Yj)
is the geodesic distance between vertices Yi and Yj in the original mesh, and
dE(Xi,Xj) is the Euclidean distance between vertices Xi and Xj of the resulting
canonical mesh X. The algorithm iterates until |S(Xi) − S(Xi+1)| is less than
a user-defined threshold ε. This MDS algorithm has a complexity of O(N2×
NumOfIterations).

In the present paper, we adopt the Least Squares technique and the SMA-
COF algorithm to compute the 3D canonical form. Our solution decreases the
computational cost of geodesic distance computation, by using a set of local
dissimilarity matrix.

4 Our Contribution

The main idea behind our method is to construct canonical forms that are invariant
to the pose of 3D shapes. It is easy to see that the MDS embedding results naturally
deform original deformable parts to normalised poses. For this reason, we resort
to calculating local canonical form for each salient patch. We start by detecting
the limbs of a given model using an automatic and unsupervised 3D salient point
detector. The later task is based on the Auto Diffusion Function (ADF) proposed
in [10]. The scalar function ADF is defined on the mesh surface as:

ADFt = K(x, x,
t

λ1
) = Σi=0e

−t
λt
λ1 h2

i (x) (7)

where λ and h are eigenfunctions of Laplace-Beltrami operator (LBO). ADF
function is controlled by a single parameter t which can be interpreted as feature
scale. The local maximum of the ADF is proved to be the natural feature points
of the shape. A demonstration of the invariance of extracted points to non-rigid
transformation, scaling, occultation and their insensitive to noise is given in
[11]. Figure 1 illustrates examples of feature points extraction based on the ADF
function. The parameter t was fixed to 0.1.

The next step is to partition the 3D mesh into local regions using a Voronoi
diagram, where seeds are the set of feature points. We then compute the canon-
ical form of the mesh by calculating the value of δi,j , for all vertices in the same
patch. The value of δi,j is equal to the length of the shortest path connecting ver-
tex i to vertex j. This aims to minimising the computation cost of the geodesic
distance and avoid exploring all the paths between every two points in the origi-
nal space. Thus, the estimated complexity of this algorithm is O(km2

k), where k
denotes the number of local patches and mk is the number of vertices in the kth

region. In order to speed up the computation of geodesic distances, we use the
heat method proposed by Crane et al. in [13], which gives an approximation of
the geodesic distance by exploiting heat kernels. Figure 2 illustrates the results
obtained by applying the fast marching algorithm and heat geodesic method. In
this work, we used the Matlab source code available on the web site of the book
(Bronstein et al. [14]) to calculate the canonical form. Clearly, the heat method
gives similar results of the embedding form and has high convergence speed.
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Fig. 1. Robustess for ADF detector to scale (a), occultation (b), noise (c), smooth (d),
non-rigid deformations (e) and its reliance on shape (f).

Fig. 2. Swiss roll surface (a), and its 3D canonical form using the classical MDS,
(b) geodesic distance is computing by the fast marching algorithm and heat geodesic
method(c). Their convergence speed is plotted is (d).

To preserve local features of the mesh, we do not treat all pairs of features
in the same manner. However, we enforce a target weight between all connected
vertices i and j in the same region. The value of wi,j is set according to the value
of the commute-time distance ci,j . Notes that this is the expected time taken
by the random walk to travel from i to j in both directions. Therefore, if ci,j
is small, then δi,j should also be small enough to minimize the stress function
given in Eq. (1). The commute-time distance is defined as:

dc(i, j)2 = Σi=1
1
λi

(hi(x) − hi(y))2, (8)
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In order to assemble local canonical forms and create final canonical form of
a given model, we need to add a constraint between different partitions. This
constraint is formulated as the spatial relationship between the set of features
points associated to the local patches.

As it is well known, the important properties of the distance are metric,
smooth, locally isotropic, globally shape-aware, isometry invariant, insensitive
to noise and small topology changes, parameter-free, and practical to compute
on a discrete mesh. Thus, in order to satisfy our exigences, we made the choice
of the biharmonic distance [9]. The latter distance, is based on the biharmonic
differential operator, but applies different (inverse squared) weighting to the
eigenvalues of the Laplace-Beltrami operator, which provides a nice trade-off
between nearly geodesic distances for small distances and global shape-awareness
for large distances. We used the discrete definition of the biharmonic distance
based on the common cotangent formula discretization of the Laplace-Beltrami
differential operator on meshes [18].

Given the discretization of the Laplacian, Lipman and all [9] defined the
discrete Biharmonic distance as:

dB(x, y)2 = Σi=1
(hi(x) − hi(y))2

λ2
i

(9)

roughly speaking, we reformulate the final stress function to be minimised as:

S(X) = ΣkΣi,j∈Pk

c2i,j

δi, j2
(δij − di,j)

2 +
1
2
Σi,j∈F (ADFi + ADFj)(dBi,j − di,j)

2

(10)
where k is the number of local patches and F is the set of feature points. δi,j is
the local geodesic distances in each region P and dBi,j is the biharmonic distance
between feature points.

We can ensure that our solution gives good results based on the comparison
present in [10]. Thus, geodesic distance admits desirable local properties and
gradually increases in the neighborhood of the source vertex (see Fig. 3). How-
ever, it is not globally shape-aware. In addition, the calculation of the bihar-
monic distances between extremities of the object is much faster than geodesic
distances.

Figure 4 shows an overview of our algorithm (Fig. 4e) of a given 3D object
(Fig. 4a). The scalar function ADF is used as an unsupervised detector of feature
points (Fig. 4b and c). In Fig. 4c, we represent the overall geodesic distance
computing from the local patches. For n = 9501 vertex, we use 17 million values
in the dissimilarity matrix instead of n2, i.e. approximately a reduction of 80%.
Examples of 3D canonical forms produced by our method are also given in Fig. 5
for different 3D models.

The computational complexity of the 3D canonical form methods depend on
the time complexity of distances calculation (matrices δ and dB in Eq. (10) and
the SMACOF algorithm (see Sect. 3).
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Fig. 3. Distances measured on an Euclidean domain (top-left). We visualize the dis-
tance field from a single source point to all other points as a height function over
this Euclidean domain; (a) Geodesic distance, and (b)biharmonic distance. The geo-
desic distance possesses non-smooth curve of points and the isolines are not “shape-
aware” far from the source. Biharmonic distance balances the “local” and “global”
properties [10].

Fig. 4. Main steps of our procedure that employs the local features (c) extracted by
the ADF scalar function defined on the mesh surface (b) to generate final 3D canonical
form of the original model (a).

Geodesic based methods calculate the geodesic distance between all pairs
of vertices using the fast marching algorithm which has a time complexity of
O(N2 log N), where N is the total number of mesh vertices. Our method cal-
culates geodesic distances between only points in the same local patch rather
than all pairs. For a local patch on n vertices on average, with n � N , the
time complexity is O(n2 log n). So, the total computational complexity of dis-
tance matrices has O(mn2 log n + m2), where m is the number of local patches.
Note that m is very small compared to N , (for instance, we have m = 5 and
N = 60000, for the human body shape).

In addition, the SMACOF algorithm has a computational complexity of
O(N2), when the distance between all pairs of points is used. Our Algorithm
lowers this complexity to O(mn2).
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Fig. 5. 3D Canonical forms for a selection of the SHREC’15 dataset produced by our
method.

5 Experiments

5.1 Canonical Forms

We base the evaluation of the performance of the proposed parameter-free
method for 3D canonical forms computation on the SHREC’15 Track [17]. The
later is a new benchmark for testing algorithms at creating canonical forms for
use in non-rigid 3D shape retrieval.

The dataset contains models from both the SHREC11 non-rigid benchmark
[19] and the SHREC14 non-rigid humans benchmark [20]. The total number of
meshes in the dataset is 100 meshes, split into 10 different shape classes. Each
shape class contains a mesh in 10 different non-rigid poses.

Authors attempted to quantify how much the canonical forms distort the
mesh’s original shape, and the consistency of the different canonical forms of the
same shape in different poses. They proposed two measures:

– The compactness measure is calculated as V 2

A3 , where V is the mesh volume
and A is the mesh surface area. The difference in the compactness measure
between the original mesh and the canonical form quantify the amount of
distortion of the original shape.

– The Hausdorff distance is computed using iterative closest point matching
to align each pair of shapes of the same class. This measure quantify the
consistency of the canonical forms across models of the same shape.
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Fig. 6. Example of canonical forms of each mesh.

Table 1. Error in compactness between the canonical forms and the original meshes
for each class. The values have been multiplied by 104.

Class Mean Error Standard deviation

Santa 1.994 0.633

Horse 4.344 1.360

Dog1 1.907 0.309

Bird2 0.586 0.672

Laptop 0.336 0.741

Female1 5.726 1.721

Female2 5.281 1.390

Male1 4.551 1.076

Child body 3.963 1.441

Male2 4.246 1.445

Whole 3.3246 2.102

Several canonical forms of two objects with non-rigid deformations are shown
in Fig. 6. Our method successfully producing canonical forms of each shape
by eliminating non-rigid deformations and stretched out their extremities. The
obtained results aim to standardize its pose.

Table 1 shows the compactness measure of our method for each class in the
dataset at preserving the shape of the original model. Our method performs
better at preserving compactness of all the dataset. This highlights the advantage
of using local features instead of global features.
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Table 2. Haussdorff distances between canonical forms of the same class.

0 0.181 0.182 0.181 0.165

0.181 0 0.181 0.181 0.1657

0.182 0.181 0 0.1658 0.1657

0.181 0.181 0.1658 0 0.1658

0.165 0.1657 0.1657 0.1658 0

Table 3. Error in compactness between the canonical forms and the original meshes
for each method. The values have been multiplied by 104.

Classical

MDS

Fast

MDS

Least-

squares

MDS

Non-metric

MDS

Skeletons Euclidean

random

Euclidean

normalised

1-Form

MDS

Our

method

Mean Error 8.44 6.60 4.77 5.17 0.71 1.86 2.97 4.89 3.32

Standard deviation 4.420 3.384 3.595 3.754 0.907 1.362 1.231 3.712 2.102

Furthermore, we used the Meshlab [21] to compute the Hausdorff distance
between a few of models of the same shape class of the SHREC’15 dataset.
Table 2 shows small distances between the associated canonical forms, despite the
presence of non-rigid deformations. These results promote the use of canonical
forms in the non-rigid object recognition task.

In addition, we compare our results against those submitted to the SHREC’15
canonical forms benchmark [17]. Table 3 shows that our local method outper-
forms geodesic based methods and cause less shape distortion. However, our
method is competitive with methods based on Euclidean distance. Yet, we only
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use local features at the ends of the shape members. In addition, the parameters
of our method are fully automatic and free.

6 Conclusion

In this paper, we presented a novel method to construct canonical forms for
3D models based on the classical MDS method. Our contribution is to divide
the problem of 3D canonical form embedding into sub-problems. To solve the
resulting optimisation sub-problems, we added a spatial constraint between local
features. We took advantage of the good properties of the Biharmonic distance
to add relationship between sub-problems. In addition, we proposed a dynamic
setting of the weight values in the stress function, according to the values of the
dissimilarity matrix and the commute-time weight.

Experiments demonstrated the efficiency of our algorithm to construct an
invariant 3D canonical form for a 3D surface. Our method preserve local and
global features between original surfaces and MDS embedded surfaces and is also
able to achieve the same bending invariant pose as the previous state-of-the-art.
Yet, it involves far less shape distortion than other geodesic based methods.

As future works, we propose to test the performance of our method in the
retrieval task on a recent canonical forms benchmark.

References

1. Cox, M.A., Cox, T.F.: Multidimensional Scaling. Chapman and Hall, London/
New York (1994)

2. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications.
Springer, Heidelberg (1997)

3. Faloutsos, C., Lin, K.D.: A fast algorithm for indexing, data mining and visuali-
sation of traditional and multimedia datasets. In: Proceedings of ACM SIGMOD,
pp. 163–174 (1995)

4. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core
extraction. Vis. Comput. 21, 8–10 (2005)

5. Elad, A., Kimmel, R.: On bending invariant signatures for surface. IEEE Trans.
Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)

6. Lian, Z., Godil, A., Xiao, J.: Feature-preserved 3d canonical form. Int. J. Comput.
Vis. 102, 221–238 (2013)

7. Wang, X.-L., Zha, H.: Contour canonical form: an efficient intrinsic embedding
approach to matching non-rigid 3D objects. In: Proceedings of the 2nd ACM Inter-
national Conference on Multimedia Retrieval, Article No. 31 (2012)

8. Pickup, D., Sun, X., Rosin, P.L., Martin, R.R.: Euclidean-distance-based canonical
forms for non-rigid 3D shape retrieval. Pattern Recognit. 48(8), 2500–2512 (2015)

9. Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic distance. ACM
Trans. Graph. (TOG) 29(3), 27 (2010)

10. G ↪ebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto
diffusion function. Comput. Graph. Forum 28(5), 1405–1413 (2009)

11. Mohamed, H.H., Belaid, S.: Algorithm BOSS (Bag-of-Salient local Spectrums) for
non-rigid and partial 3D object retrieval. Neurocomputing 168, 790–798 (2015)



14 H.H. Mohamed et al.

12. Papadimitriou, C.H.: An algorithm for shortest-path motion in three dimensions.
IPL 20, 259–263 (1985)

13. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to
computing distance based on heat flow. ACM Trans. Graph. 32(5), Article No. 152
(2013)

14. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid
Shapes. Monographs in Computer Science. Springer, Heidelberg (2009)

15. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl.
Acad. Sci. 95, 8431–8435 (1998)

16. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact
and approximate geodesics on meshes. ACM Trans. Graph. 24(3), 553–560 (2005)

17. Pickup, D., et al.: SHREC 15 track: canonical forms for non-rigid 3D shape retrieval
(2015)

18. Grinspun, E., Gingold, Y., Reisman, J., Zorin, D.: Computing discrete shape oper-
ators on general meshes. Eurograph. Comput. Graph. Forum 25(3), 547–556 (2006)

19. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y.,
Lavoue, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter,
M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC 11
track: shape retrieval on non-rigid 3D watertight meshes. In: Proceedings of the
4th Eurographics Conference on 3D Object Retrieval, pp. 79–88 (2011)

20. Cheng, Z., Lian, Z., Aono, M., Hamza, A.B., Bronstein, A., Bronstein, M., Bu, S.,
Castellani, U., Cheng, S., Garro, V., Giachetti, A., Godil, A., Han, J., Johan, H.,
Lai, L., Li, B., Li, C., Li, H., Litman, R., Liu, X., Liu, Z., Lu, Y., Tatsuma, A.,
Ye, J.: Shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th
Eurographics Workshop on 3D Object Retrieval, pp. 101–110 (2014)

21. Meshlabv1.3.0 (2011). http://meshlab.sourceforge.net

http://meshlab.sourceforge.net

	Local Feature-Based 3D Canonical Form
	1 Introduction
	2 MDS-Based Techniques
	3 Mathematical Background
	4 Our Contribution
	5 Experiments
	5.1 Canonical Forms

	6 Conclusion
	References


