Skip to main content

Topical Drug Candidate Selection Criteria and Cascade

  • Chapter
  • First Online:
Dermal Drug Selection and Development

Abstract

A key objective of the drug discovery project team is to discharge as much risk as possible for the selected candidate such that the best possible molecule can be progressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elebring T, Gill A, Plowright AT. What is the most important approach in current drug discovery: doing the right things or doing things right? Drug Discov Today. 2012;17(21–22):1166–9.

    Article  PubMed  Google Scholar 

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–26.

    Article  CAS  Google Scholar 

  3. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–9.

    Article  CAS  PubMed  Google Scholar 

  4. Abad-Zapatero C. Ligand efficiency indices for effective drug discovery. Expert Opin Drug Discov. 2007;2(4):469–88.

    Article  CAS  PubMed  Google Scholar 

  5. Bembenek SD, Tounge BA, Reynolds CH. Ligand efficiency and fragment-based drug discovery. Drug Discov Today. 2009;14(5–6):278–83.

    Article  CAS  PubMed  Google Scholar 

  6. Rognan D. Fragment-based approaches and computer-aided drug discovery. Top Curr Chem. 2012;317:201–22.

    Article  CAS  PubMed  Google Scholar 

  7. Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov. 2007;6(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  8. Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm. 2001;215(1–2):51–6.

    Article  CAS  PubMed  Google Scholar 

  9. Abraham MH, Martins F. Human skin permeation and partition: general linear free-energy relationship analyses. J Pharm Sci. 2004;93(6):1508–23.

    Article  CAS  PubMed  Google Scholar 

  10. Wilschut A, ten Berge WF, Robinson PJ, McKone TE. Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere. 1995;30(7):1275–96.

    Article  CAS  PubMed  Google Scholar 

  11. Flynn GL. Physicochemical determinants of skin absorption. In: Gerity TR, Henry CJ, editors. Principles of route to route extrapolation for risk assessment. Amsterdam: Elsevier; 1990. p. 93–127.

    Google Scholar 

  12. Lian G, Chen L, Han L. An evaluation of mathematical models for predicting skin permeability. J Pharm Sci. 2008;97(1):584–98.

    Article  CAS  PubMed  Google Scholar 

  13. Trottet L, Merly C, Mirza M, Hadgraft J, Davis AF. Effect of finite doses of propylene glycol on enhancement of in vitro percutaneous permeation of loperamide hydrochloride. Int J Pharm. 2004;274(1–2):213–9.

    Article  CAS  PubMed  Google Scholar 

  14. Trottet L. Effective use of the model: Improving percutaneous flux measurements. In: Topical pharmacokinetics for a rational and effective topical drug development process, Ph.D. Thesis, University of Greenwich, 2004.

    Google Scholar 

  15. Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31(5):510–8.

    Article  CAS  PubMed  Google Scholar 

  16. ICH. PhotoSafety evaluation of pharmaceuticals - S10 - ICH harmonised tripartite guideline. 2015.

    Google Scholar 

  17. Tornier C, Rosdy M, Maibach HI. In vitro skin irritation testing on reconstituted human epidermis: reproducibility for 50 chemicals tested with two protocols. Toxicol In Vitro. 2006;20(4):401–16.

    Article  CAS  PubMed  Google Scholar 

  18. Spielmann H, et al. The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the skin integrity function test. Altern Lab Anim. 2007;35(6):559–601.

    CAS  PubMed  Google Scholar 

  19. Jírová D, et al. Comparison of human skin irritation patch test data with in vitro skin irritation assays and animal data. Contact Dermatitis. 2010;62(2):109–16.

    Article  PubMed  Google Scholar 

  20. Chandra SA, et al. Dermal irritation of petrolatum in rabbits but not in mice, rats or minipigs. J Appl Toxicol. 2014;34(8):857–61.

    Article  CAS  PubMed  Google Scholar 

  21. Nixon GA, Tyson CA, Wertz WC. Interspecies comparisons of skin irritancy. Toxicol Appl Pharmacol. 1975;31(3):481–90.

    Article  CAS  PubMed  Google Scholar 

  22. Phillips L, Steinberg M, Maibach HI, Akers WA. A comparison of rabbit and human skin response to certain irritants. Toxicol Appl Pharmacol. 1972;21(3):369–82.

    Article  CAS  PubMed  Google Scholar 

  23. Stricker-Krongrad A, Shoemake CR, Liu J, Brocksmith D, Bouchard G. The importance of minipigs in dermal safety assessment: an overview. Cutan Ocul Toxicol. 2016:1–9.

    Google Scholar 

  24. Waters NJ, Jones R, Williams G, Sohal B. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J Pharm Sci. 2008;97(10):4586–95.

    Article  CAS  PubMed  Google Scholar 

  25. Mahmood I, Balian JD. Interspecies scaling: predicting clearance of drugs in humans. Three different approaches. Xenobiotica. 1996;26(9):887–95.

    Article  CAS  PubMed  Google Scholar 

  26. Jolivette LJ, Ward KW. Extrapolation of human pharmacokinetic parameters from rat, dog, and monkey data: molecular properties associated with extrapolative success or failure. J Pharm Sci. 2005;94(7):1467–83.

    Article  CAS  PubMed  Google Scholar 

  27. Riede J, Poller B, Umehara K, Huwyler J, Camenisch G. New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsome data. Eur J Pharm Sci. 2016;86:96–102.

    Article  CAS  PubMed  Google Scholar 

  28. Pannatier A, Jenner P, Testa B, Etter JC. The skin as a drug-metabolizing organ. Drug Metab Rev. 1978;8(2):319–43.

    Article  CAS  PubMed  Google Scholar 

  29. Hotchkiss SA. Dermal metabolism. In: Roberts MS, Walters KA, editors. Dermal absorption and toxicity assessment. New York: Marcel Dekker; 1998. p. 43–101.

    Google Scholar 

  30. Tauber U, Rost K. Esterase activity in the skin including species variation. In: Shroot B, Schaeffer H, editors. Pharmacology and the skin, vol. 1. Basel: Karger; 1987. p. 170–83.

    Google Scholar 

  31. Johansen M, Mollgaard B, Wotton PK, Larsen C, Hoelgaard A. In vitro evaluation of dermal prodrug delivery – transport and bioconversion of a series of aliphatic esters of metronidazole. Int J Pharm. 1986;32:199–206.

    Article  CAS  Google Scholar 

  32. Hansen J, Mollgaard B, Avnstorp C, Menne T. Paraben contact allergy: patch testing and in vitro absorption/metabolism. Am J Contact Dermat. 1993;4:78–86.

    Article  Google Scholar 

  33. Guzek DB, Kennedy AH, McNeill SC, Wakshull E, Potts RO. Transdermal drug transport and metabolism. I. Comparison of in vitro and in vivo results. Pharm Res. 1989;6(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  34. Nelson CH, Buttrick BR, Isoherranen N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr Top Med Chem. 2013;13(12):1402–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pavez Loriè E, et al. Topical treatment with CYP26 inhibitor talarozole (R115866) dose dependently alters the expression of retinoid-regulated genes in normal human epidermis. Br J Dermatol. 2009;160(1):26–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Trottet .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Trottet, L., Maibach, H. (2017). Topical Drug Candidate Selection Criteria and Cascade. In: Dermal Drug Selection and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-59504-7_10

Download citation

Publish with us

Policies and ethics