Skip to main content

Grain Refinement

  • Chapter
  • First Online:
Al-Si Alloys

Abstract

This chapter reviews the fundamental aspects of alloy grain refinement and cover aspects such as the refinement of Al phases, grain growth restriction factor, and effects and applications of refinement in liquid and semisolid states. The primary Si phase in Al-Si hypereutectic alloys is described and analyzed to provide a comprehensive understanding of this phase and the key aspects for its proper refinement. The chapter is then concluded with a grain refinement overview by chemical, mechanical, and thermal methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fainstein-Pedraza, D., and G.F. Bolling. 1975. Superdendritic growth. Journal of Crystal Growth 28 (3): 311–318. https://doi.org/10.1016/0022-0248(75)90068-8.

    Article  Google Scholar 

  2. Quaresma, J.M.V., C.A. Santos, and A. Garcia. 2000. Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu alloys. Metallurgical and Materials Transactions A 31 (12): 3167–3178. https://doi.org/10.1007/s11661-000-0096-0.

    Article  Google Scholar 

  3. Dahle, A.K., Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. StJohn. 2001. Development of the as-cast microstructure in magnesium–aluminium alloys. Journal of Light Metals 1 (1): 61–72. https://doi.org/10.1016/S1471-5317(00)00007-9.

    Article  Google Scholar 

  4. Efzan, M.N.E., H.J. Kong, and C.K. Kok. 2014. Review: Effect of alloying element on Al-Si alloys. Materials, Industrial, and Manufacturing Engineering Research Advances 845 (1.1): 355–359. https://doi.org/10.4028/www.scientific.net/AMR.845.355.

    Google Scholar 

  5. Gruzleski, J.E., and B.M. Closset. 1990. The treatment of liquid aluminum-silicon alloys, 256. Des Plaines: American Foundrymen’s Society, Inc.

    Google Scholar 

  6. Campbell, J. 2003. Castings. 2nd ed. Oxford, UK: Butterworth Heinemann.

    Google Scholar 

  7. Bäckerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys: Foundry alloys. Vol. 2. 1st ed., 256. Stockholm: AFS/Skan Aluminium.

    Google Scholar 

  8. Bäckerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys: Wrought alloys. Vol. 1. 1st ed. AFS/Skan Aluminium.

    Google Scholar 

  9. Adams, J.H., et al. 1990. ASM metals handbook: Properties and selection: Nonferrous alloys and special-purpose materials, Vol. 2. Materials Park: ASM International.

    Google Scholar 

  10. Jorstad, J.L. 1971. The hypereutectic aluminum-silicon alloy used to cast the Vega engine block. Modern Casting 60 (4): 59–64.

    Google Scholar 

  11. Brodova, I.G., P.S. Popel, and G.I. Eskin. 2001. Liquid metal processing: Applications to aluminium alloy production. New York: Taylor & Francis.

    Google Scholar 

  12. Jorstad, J.L. 1970. Paper no. 105, 5–11. Detroit: SDCE.

    Google Scholar 

  13. Jostard, J.L. 1971. AFS casting congress, 71–76.

    Google Scholar 

  14. Green, R.E. 1970. Die casting the Vega engine block. Die Casting Engineer 14: 12–26.

    Google Scholar 

  15. Jorstad, J.L. 1970. 6th SDCE international die casting congress, Cleveland, 1–6.

    Google Scholar 

  16. Norbye, J.P. 1970. Chevrolet vega 2300 engine. Automobile Engineering: 320–326.

    Google Scholar 

  17. Development of power. 2016. Available from: http://www.tpub.com/content/engine/14037/css/14037_91.htm.

  18. Lee, Y.C., A.K. Dahle, D.H. StJohn, and J.E.C. Hutt. 1999. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 259 (1): 43–52. https://doi.org/10.1016/S0921-5093(98)00884-3.

    Article  Google Scholar 

  19. Kori, S.A., B.S. Murty, and M. Chakraborty. 2000. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 283 (1–2): 94–104. https://doi.org/10.1016/S0921-5093(99)00794-7.

    Article  Google Scholar 

  20. Robles Hernandez, F.C., and J.H. Sokolowski. 2006. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys. Journal of Alloys and Compounds 426 (1–2): 205–212. https://doi.org/10.1016/j.jallcom.2006.09.039.

    Article  Google Scholar 

  21. Robles Hernandez, F.C., and J.H. Sokolowski. 2006. Thermal analysis and microscopical characterization of Al-Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190. https://doi.org/10.1016/j.jallcom.2005.07.077.

    Article  Google Scholar 

  22. Robles Hernandez, F.C., and J.H. Sokolowski. 2009. Effects and on-line prediction of electromagnetic stirring on microstructure refinement of the 319 Al-Si hypoeutectic alloy. Journal of Alloys and Compounds 480 (2): 416–421. https://doi.org/10.1016/j.jallcom.2009.02.109.

    Article  Google Scholar 

  23. Robles Hernández, F.C., and J.H. Sokolowski. 2005. Identification of silicon agglomerates in quenched Al-Si hypereutectic alloys from liquid state. Advanced Engineering Materials 7 (11): 1037–1043.

    Article  Google Scholar 

  24. Robles Hernandez, F.C., J.H. Sokolowski, and J.J. De Cruz Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51.

    Article  Google Scholar 

  25. Robles-Hernández, F.C. 2004. Improvement in functional characteristics of Al-Si cast components through the utilization of a novel electromagnetic treatment of liquid melts, 251. Windsor: Mechanical Engineering, University of Windsor.

    Google Scholar 

  26. Sadigh, B., M. Dzugutov, and S.R. Elliott. 1999. Vacancy ordering and medium-range structure in a simple monatomic liquid. Physical Review B 59 (1): 1–4.

    Article  Google Scholar 

  27. Bäckerud, L. 1968. Kinetic aspects of the solidification of binary and ternary alloy systems. Jernkontorets Annaler 152 (3): 109–138.

    Google Scholar 

  28. Quested, T.E., A.T. Dinsdale, and A.L. Greer. 2005. Thermodynamic modelling of growth-restriction effects in aluminium alloys. Acta Materialia 53 (5): 1323–1334. https://doi.org/10.1016/j.actamat.2004.11.024.

    Article  Google Scholar 

  29. Easton, M.A., and D.H. StJohn. 2001. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Materialia 49 (10): 1867–1878. https://doi.org/10.1016/S1359-6454(00)00368-2.

    Article  Google Scholar 

  30. Spittle, J.A., and S. Sadli. 1995. Effect of alloy variables on grain refinement of binary aluminium alloys with Al–Ti–B. Materials Science and Technology 11 (6): 533–537. https://doi.org/10.1179/mst.1995.11.6.533.

    Article  Google Scholar 

  31. Tarshis, L.A., J.L. Walker, and J.W. Rutter. 1971. Experiments on the solidification structure of alloy castings. Metallurgical Transactions 2 (9): 2589–2597. https://doi.org/10.1007/BF02814899.

    Article  Google Scholar 

  32. Greer, A.L., A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow. 2000. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al–Ti–B. Acta Materialia 48 (11): 2823–2835. https://doi.org/10.1016/S1359-6454(00)00094-X.

    Article  Google Scholar 

  33. Easton, M., and D. StJohn. 2005. An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metallurgical and Materials Transactions A 36 (7): 1911–1920. https://doi.org/10.1007/s11661-005-0054-y.

    Article  Google Scholar 

  34. Maxwell, I., and A. Hellawell. 1975. A simple model for grain refinement during solidification. Acta Metallurgica 23 (2): 229–237. https://doi.org/10.1016/0001-6160(75)90188-1.

    Article  Google Scholar 

  35. Lee, Y.C., A.K. Dahle, D.H. StJohn, and J.E.C. Hutt. 1999. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al–Si alloys. Materials Science and Engineering A 259 (1): 43–52. https://doi.org/10.1016/S0921-5093(98)00884-3.

    Article  Google Scholar 

  36. Backerud, L., M. Johnsson, and G.K. Sigworth. 2000. Method for optimization of the grain refinement of aluminum alloys. 1, 6,073,677.

    Google Scholar 

  37. Johnsson, M. 1995. Grain refinement of aluminium studied by use of a thermal analytical technique. Thermochimica Acta 256 (1): 107–121. https://doi.org/10.1016/0040-6031(94)02167-M.

    Article  Google Scholar 

  38. Backerud, L. 1983. How does a good grain refiner work. Light Metal Age 41 (9–10): 6–10.

    Google Scholar 

  39. Gruzleski, J.E. 2000. Microstructure development during metal casting, 238. Des Plaines: American Foundrymen’s Society.

    Google Scholar 

  40. Iqbal, N., N.H. van Dijk, T. Hansen, L. Katgerman, and G.J. Kearley. 2004. The role of solute titanium and TiB2 particles in the liquid-solid phase transformation of aluminum alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 386 (1–2): 20–26. https://doi.org/10.1016/j.mesa.2004.06.068.

    Article  Google Scholar 

  41. Murty, B.S., S.A. Kori, and M. Chakraborty. 2002. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. International Materials Reviews 47 (1): 3–29. https://doi.org/10.1179/095066001225001049.

    Article  Google Scholar 

  42. Easton, Mark, and David StJohn. 1999. Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature. Metallurgical and Materials Transactions A 30 (6): 1613–1623. https://doi.org/10.1007/s11661-999-0098-5.

    Article  Google Scholar 

  43. Gloria Ibarra, D. 1999. Control of grain refinement of AI-Si alloys by thermal analysis, 123. Montreal: Department of Mining and Metallurgical Engineering, McGill University.

    Google Scholar 

  44. Inui, M., S.I. Takeda, Y. Shirakawa, S. Tamaki, Y. Waseda, and Y. Yamaguchi. 1991. Structural study of molten silver halides by neutron diffraction. Journal of the Physical Society of Japan 60 (9): 3025–3031. https://doi.org/10.1143/JPSJ.60.3025.

  45. Jones, G.P. 1987. Solidification processing, 496–499. London: The Institute of Metals.

    Google Scholar 

  46. Lidman, W.G. 1984. Master alloys improve aluminum casting properties. Foundry M&T 112 (8): 46–47.

    Google Scholar 

  47. Mohanty, P.S., F.H. Samuel, and J.E. Gruzleski. 1995. Experimental study on pore nucleation by inclusions in aluminum castings. AFS Transactions 103: 555–564.

    Google Scholar 

  48. Bian, X., and W. Wang. 2000. Thermal-rate treatment and structure transformation of Al–13 wt.% Si alloy melt. Materials Letters 44 (1): 54–58. https://doi.org/10.1016/S0167-577X(00)00011-2.

    Article  Google Scholar 

  49. Djurdjevic, M.B., W. Kasprzak, C.A. Kierkus, W.T. Kierkus, and J.H. Sokolowski. 2001. Quantification of Cu enriched phases in synthetic 3XX aluminum alloys using the thermal analysis technique. AFS Transactions 16: 1–12.

    Google Scholar 

  50. Xiufang, B., and Q. Jingyu. 2004. Aluminium alloys: Their physical and mechanical properties. In 9th International Conference on Aluminium Alloys (ICAA9). North Melbourne: Institute of Materials Engineering Australasia.

    Google Scholar 

  51. Xiufang, B., W. Weimin, and Q. Jingyu. 2001. Liquid structure of Al–12.5% Si alloy modified by antimony. Materials Characterization 46 (1): 25–29. https://doi.org/10.1016/S1044-5803(00)00089-9.

    Article  Google Scholar 

  52. Wang, W., X. Bian, J. Qin, and T. Fan. 2000. Study on atomic density changes in the liquid Al-Si alloys by X-ray diffraction method. Journal of Materials Science Letters 19 (17): 1583–1585. https://doi.org/10.1023/A:1006741626728.

    Article  Google Scholar 

  53. Eskin, G.I. 1998. Ultrasonic treatment of light alloy melts. CRC Press Taylor and Francis Group.

    Google Scholar 

  54. Robles Hernández, F.C., and J.H. Sokolowski. 2009. Effects and on-line prediction of electromagnetic stirring on microstructure refinement of the 319 Al–Si hypoeutectic alloy. Journal of Alloys and Compounds 480 (2): 416–421.

    Article  Google Scholar 

  55. Jain, S.C., H.E. Maes, K. Pinardi, and I. De Wolf. 1996. Stresses and strains in lattice-mismatched stripes, quantum wires, quantum dots, and substrates in Si technology. Journal of Applied Physics 79 (11): 8145–8165. https://doi.org/10.1063/1.362678.

    Article  Google Scholar 

  56. Wang, W., X. Bian, J. Qin, and S.I. Syliusarenko. 2000. The atomic-structure changes in Al-16 pct Si alloy above the liquidus. Metallurgical and Materials Transactions A 31 (9): 2163–2168. https://doi.org/10.1007/s11661-000-0134-y.

    Article  Google Scholar 

  57. Robles Hernández, F.C., and J.H. Sokolowski. 2006. Thermal analysis and microscopical characterization of Al–Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190. https://doi.org/10.1016/j.jallcom.2005.07.077.

    Article  Google Scholar 

  58. Qiao, J., X. Song, X. Bian, L. Zhu, and Q. Zhang. 2002. Special Casting & Nonferrous Alloys. Oct.–Dec: 43–45.

    Google Scholar 

  59. Abramov, V., O. Abramov, V. Bulgakov, and F. Sommer. 1998. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator. Materials Letters 37 (1–2): 27–34. https://doi.org/10.1016/S0167-577X(98)00064-0.

    Article  Google Scholar 

  60. Vives, C. 1992. Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes. Metallurgical Transactions B 23 (2): 189–206.

    Article  Google Scholar 

  61. Zhang, W., Y. Yang, Q. Liu, Y. Zhu, and Z. Hu. 1997. Effects of forced flow on morphology of Al – CuAl2 eutectic solidified with electromagnetic stirring. Journal of Materials Science Letters 16 (23): 1955–1957. https://doi.org/10.1023/A:1018555121395.

    Article  Google Scholar 

  62. Lim, S.-C., E.-P. Yoon, and J.-S. Kim. 1997. The effect of electromagnetic stirring on the microstructure of Al-7 wt% Si alloy. Journal of Materials Science Letters 16 (2): 104–109. https://doi.org/10.1023/A:1018525506838.

    Article  Google Scholar 

  63. Desnain, P., Y. Fautrelle, J.L. Meyer, J.P. Riquet, and F. Durand. 1990. Prediction of equiaxed grain density in multicomponent alloys, stirred electromagnetically. Acta Metallurgica et Materialia 38 (8): 1513–1523. https://doi.org/10.1016/0956-7151(90)90119-2.

    Article  Google Scholar 

  64. Nafisi, S., R. Ghomashchi, J. Hedjazi, and S.M.A. Boutorabi. 2004. Advances in lightweight automotive castings and wrought aluminum alloys. In SAE world congress. Detroit: Society of Automotive Engineers.

    Google Scholar 

  65. Chang, J., I. Moon, and C. Choi. 1998. Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals. Journal of Materials Science 33 (20): 5015–5023. https://doi.org/10.1023/A:1004463125340.

    Article  Google Scholar 

  66. Cullity, B.D., and S.R. Stock. 2001. Elements of x-ray diffraction. In Addison-Wesley series in metallurgy and materials, 3rd ed., 680. Reading: Addison-Wesley Pub. Co.

    Google Scholar 

  67. Robles Hernandez, F.C., J.H. Sokolowski, and J. de J. Cruz Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51. https://doi.org/10.1002/adem.200600173.

  68. Radjai, A., and K. Miwa. 2002. Structural refinement of gray iron by electromagnetic vibrations. Metallurgical and Materials Transactions A 33 (9): 3025–3030. https://doi.org/10.1007/s11661-002-0287-y.

    Article  Google Scholar 

  69. Gabalthular, J.P., S. Steeb, and P. Laparner. 1979. Über die Struktur von Aluminium-Silizium-Schmelzen. Zeitschrift für Naturforschung 34a: 1305–1315.

    Google Scholar 

  70. Kapranos, P., D.H. Kirkwood, H.V. Atkinson, J.T. Rheinlander, J.J. Bentzen, P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, and A. Giese. 2003. Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy. Journal of Materials Processing Technology 135 (2–3): 271–277. https://doi.org/10.1016/S0924-0136(02)00857-9.

    Article  Google Scholar 

  71. McDonald, S.D., K. Nogita, and A.K. Dahle. 2004. Eutectic nucleation in Al–Si alloys. Acta Materialia 52 (14): 4273–4280. https://doi.org/10.1016/j.actamat.2004.05.043.

    Article  Google Scholar 

  72. Callister, W.D. 2007. Materials science and engineering: An introduction. 7th ed., 832. Wiley.

    Google Scholar 

  73. Porter, D.A., K.E. Easterling, and M. Sherif. 2009. Phase transformations in metals and alloys (Revised reprint), 520. Boca Raton: CRC press.

    Google Scholar 

  74. Evans, E.L., C.B. Alcock, and O. Kubaschewski, eds. 1967. Metallurgical thermochemistry. 4th ed. Oxford, UK/New York: Pergamon Press.

    Google Scholar 

  75. Wang, F., Z. Zhang, Y. Ma, and Y. Jin. 2004. Effect of Fe and Mn additions on microstructure and wear properties of spray-deposited Al–20Si alloy. Materials Letters 58 (19): 2442–2446. https://doi.org/10.1016/j.matlet.2004.02.027.

    Article  Google Scholar 

  76. Narayanan, L.A., F.H. Samuel, and J.E. Gruzleski. 1992. Thermal analysis studies on the effect of cooling rate on the microstmcture of 319 aluminum alloy. AFS Transactions 100: 383–391.

    Google Scholar 

  77. Kierkus, W.T., and J.H. Sokolowski. 1999. Recent advances in cooling curve analysis: A new method of determining the ‘Base Line’ equation. AFS Transactions 66: 161–167.

    Google Scholar 

  78. Polishchuck, V.P., and N.R. Aranova. 1965. Trudy Donetsk N-I Inst. Chern. Met. 2: 146–152.

    Google Scholar 

  79. Barclay, R.S., P. Niessen, and H.W. Kerr. 1973. Halo formation during unidirectional solidification of off-eutectic binary alloys. Journal of Crystal Growth 20 (3): 175–182. https://doi.org/10.1016/0022-0248(73)90001-8.

    Article  Google Scholar 

  80. Radjai, A., and K. Miwa. 2000. Effects of the intensity and frequency of electromagnetic vibrations on the microstructural refinement of hypoeutectic Al-Si alloys. Metallurgical and Materials Transactions A 31 (3): 755–762. https://doi.org/10.1007/s11661-000-0017-2.

    Article  Google Scholar 

  81. Xu, C.L., H.Y. Wang, C. Liu, and Q.C. Jiang. 2006. Growth of octahedral primary silicon in cast hypereutectic Al–Si alloys. Journal of Crystal Growth 291 (2): 540–547. https://doi.org/10.1016/j.jcrysgro.2006.03.044.

    Article  Google Scholar 

  82. Wang, R.-Y., W.-H. Lu, and L.M. Hogan. 1999. Growth morphology of primary silicon in cast Al–Si alloys and the mechanism of concentric growth. Journal of Crystal Growth 207 (1–2): 43–54. https://doi.org/10.1016/S0022-0248(99)00347-4.

    Article  Google Scholar 

  83. Chernov, A.A. 1974. Stability of faceted shapes. Journal of Crystal Growth 24–25: 11–31. https://doi.org/10.1016/0022-0248(74)90277-2.

    Article  Google Scholar 

  84. Xu, C.L., Q.C. Jiang, Y.F. Yang, H.Y. Wang, and J.G. Wang. 2006. Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al–Si alloy. Journal of Alloys and Compounds 422 (1–2): L1–L4. https://doi.org/10.1016/j.jallcom.2005.03.128.

    Article  Google Scholar 

  85. Kobayashi, K.F., and L.M. Hogan. 1985. The crystal growth of silicon in Al-Si alloys. Journal of Materials Science 20 (6): 1961–1975. https://doi.org/10.1007/BF01112278.

    Article  Google Scholar 

  86. Lu, S.-Z., and A. Hellawell. 1987. The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metallurgical Transactions A 18 (10): 1721–1733. https://doi.org/10.1007/BF02646204.

    Article  Google Scholar 

  87. Wagner, R.S. 1960. On the growth of germanium dendrites. Acta Metallurgica 8 (1): 57–60. https://doi.org/10.1016/0001-6160(60)90145-0.

    Article  Google Scholar 

  88. Kyffin, W.J., W.M. Rainforth, and H. Jones. 2001. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy. Journal of Materials Science 36 (11): 2667–2672. https://doi.org/10.1023/A:1017904627733.

    Article  Google Scholar 

  89. Müller, K. 1997. Advanced light alloys and composites. In NATO advanced study institute. Zakopane: Kluwer Academic Publishers.

    Google Scholar 

  90. Yu, L., X. Liu, H. Ding, and X. Bian. 2007. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al–Si alloy. Journal of Alloys and Compounds 432 (1–2): 156–162. https://doi.org/10.1016/j.jallcom.2006.06.005.

    Article  Google Scholar 

  91. ———. 2007. A new nucleation mechanism of primary Si by like-peritectic coupling of AlP and Al4C3 in near eutectic Al–Si alloy. Journal of Alloys and Compounds 429 (1): 119–125. https://doi.org/10.1016/j.jallcom.2006.04.011.

    Article  Google Scholar 

  92. Kim, H.J. 2003. Effect of calcium on primary silicon particle size in hypereutectic Al–Si alloys. Materials Science and Technology 19 (7): 915–918. https://doi.org/10.1179/026708303225002820.

    Article  Google Scholar 

  93. Kyffin, W.J., W.M. Rainforth, and H. Jones. 2001. Effect of treatment variables on size refinement by phosphide inoculants of primary silicon in hypereutectic Al–Si alloys. Materials Science and Technology 17 (8): 901–905. https://doi.org/10.1179/026708301101510870.

    Article  Google Scholar 

  94. Kattoh, H., A. Hashimoto, S. Kitaoka, M. Sayashi, and M. Shioda. 2002. Critical temperature for grain refining of primary Si in hyper-eutectic Al–Si alloy with phosphorus addition. Journal of Japan Institute of Light Metals 52 (1): 18–23. https://doi.org/10.2464/jilm.52.18.

    Article  Google Scholar 

  95. Apelian, D., G.K. Sigworth, and K.R. Whaler. 1984. Assessment of grain refinement and modification of Al-Si foundry alloys by thermal analysis. AFS Transactions 92 (Paper 84–161): 297–307.

    Google Scholar 

  96. Yi, H., and D. Zhang. 2003. Morphologies of Si phase and La-rich phase in as-cast hypereutectic Al–Si–xLa alloys. Materials Letters 57 (16–17): 2523–2529. https://doi.org/10.1016/S0167-577X(02)01305-8.

    Article  Google Scholar 

  97. Yi, H., D. Zhang, T. Sakata, and H. Mori. 2003. Microstructures and La-rich compounds in a Cu-containing hypereutectic Al–Si alloy. Journal of Alloys and Compounds 354 (1–2): 159–164. https://doi.org/10.1016/S0925-8388(03)00022-7.

    Article  Google Scholar 

  98. Jiang, Q.C., C.L. Xu, M. Lu, and H.Y. Wang. 2005. Effect of new Al–P–Ti–TiC–Y modifier on primary silicon in hypereutectic Al–Si alloys. Materials Letters 59 (6): 624–628. https://doi.org/10.1016/j.matlet.2004.10.042.

    Article  Google Scholar 

  99. Xu, C.L., H.Y. Wang, Y.F. Yang, and Q.C. Jiang. 2007. Effect of Al–P–Ti–TiC–Nd2O3 modifier on the microstructure and mechanical properties of hypereutectic Al–20 wt.%Si alloy. Materials Science and Engineering A 452–453: 341–346. https://doi.org/10.1016/j.msea.2006.10.114.

    Article  Google Scholar 

  100. Vives, C., and C. Perry. 1986. Effects of electromagnetic stirring during the controlled solidification of tin. International Journal of Heat and Mass Transfer 29 (1): 21–33. https://doi.org/10.1016/0017-9310(86)90031-1.

    Article  Google Scholar 

  101. Mondolfo, L.F., and J.G. Barlock. 1975. Effect of superheating on structure of some aluminum alloys. Metallurgical Transactions B 6 (4): 565–572. https://doi.org/10.1007/BF02913849.

    Article  Google Scholar 

  102. Yamada, S.-I., K. Kobayashi, H.G. Ji, and S. Tsukahara. 2002. Morphology of primary silicon crystals during isothermal holding at solid-liquid co-existent temperature on hyper-eutectic Al–Si alloys. Journal of Japan Institute of Light Metals 52 (4): 174–178. https://doi.org/10.2464/jilm.52.174.

  103. Lojen, G., A. Krizman, and I. Anzel. 1997. Livarski Vestnik 44: 1–8.

    Google Scholar 

  104. Bergsma, S.C., M.C. Tolle, M.E. Kassner, X. Li, and E. Evangelista. 1997. Semi-solid thermal transformations of Al−Si alloys and the resulting mechanical properties. Materials Science and Engineering A 237 (1): 24–34. https://doi.org/10.1016/S0921-5093(97)00112-3.

    Article  Google Scholar 

  105. Robles Hernandez, F.C., M.B. Djurdjevic, W.T. Kierkus, and J.H. Sokolowski. 2005. Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys. Materials Science and Engineering A 396 (1–2): 271–276. https://doi.org/10.1016/j.msea.2005.01.024.

    Article  Google Scholar 

  106. Ward, P.J., H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, and J.M. Rodriguez-ibabe. 1996. Semi-solid processing of novel MMCs based on hypereutectic aluminium-silicon alloys. Acta Materialia 44 (5): 1717–1727. https://doi.org/10.1016/1359-6454(95)00356-8.

    Article  Google Scholar 

  107. Chen, C.M., C.C. Yang, and C.G. Chao. 2004. Thixocasting of hypereutectic Al–25Si–2.5Cu–1Mg–0.5Mn alloys using densified powder compacts. Materials Science and Engineering A 366 (1): 183–194. https://doi.org/10.1016/j.msea.2003.09.063.

    Article  Google Scholar 

  108. Gonzalez-Reyes, L., I. Hernández-Pérez, F.C. Robles-Hernández, H. Dorantes-Rosales, and E.M. Arce-Estrada. 2008. Sonochemical synthesis of nanostructured anatase and study of the kinetics among phase transformation and coarsening as a function of heat treatment conditions. Journal of the European Ceramic Society 28 (8): 1585–1594. https://doi.org/10.1016/j.jeurceramsoc.2007.10.013.

    Article  Google Scholar 

  109. Ma, A., K. Suzuki, N. Saito, Y. Nishida, M. Takagi, I. Shigematsu, and H. Iwata. 2005. Impact toughness of an ingot hypereutectic Al–23 mass% Si alloy improved by rotary-die equal-channel angular pressing. Materials Science and Engineering A 399 (1–2): 181–189. https://doi.org/10.1016/j.msea.2005.03.009.

    Article  Google Scholar 

  110. Dasgupta, R. 1997. Property improvement in Al–Si alloys through rapid solidification processing. Journal of Materials Processing Technology 72 (3): 380–384. https://doi.org/10.1016/S0924-0136(97)00198-2.

    Article  Google Scholar 

  111. Satoh, T., K. Okimoto, S. Nishida, and K. Matsuki. 1995. Superplastic-like behavior of rapid-solidification-processed hyper-eutectic Al-Si P/M alloys. Scripta Metallurgica et Materialia 33 (5): 819–824. https://doi.org/10.1016/0956-716X(95)00291-3.

    Article  Google Scholar 

  112. Ma, A., K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu, and T. Imura. 2005. Impact toughness of an ultrafine-grained Al–11mass%Si alloy processed by rotary-die equal-channel angular pressing. Acta Materialia 53 (1): 211–220. https://doi.org/10.1016/j.actamat.2004.09.017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Robles Hernandez, F.C., Herrera Ramírez, J.M., Mackay, R. (2017). Grain Refinement. In: Al-Si Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-58380-8_9

Download citation

Publish with us

Policies and ethics