Skip to main content

Powder Metallurgy

  • Chapter
  • First Online:
Al-Si Alloys

Abstract

This chapter deals with the production of Al-Si alloys by powder metallurgy as well as the physical and mechanical properties developed by this processing method as compared to others. The main focus is Al-Si hypereutectic alloys, using the 393 alloy as a benchmark. The sintering process and the effects of grain refinement are covered as well as the manufacturability of the samples for high quality and high complexity, and in general are ideal for neat net-shaped parts. The chapter concludes by comparing products of powder metallurgy and conventional casting with a brief explanation on developing superior mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Iron_pillar_of_Delhi.

References

  1. Suryanarayana, C. 2001. Mechanical alloying and milling. Progress in Materials Science 46 (1–2): 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9.

    Article  Google Scholar 

  2. Pickens, J.R. 1981. Aluminium powder metallurgy technology for high-strength applications. Journal of Materials Science 16 (6): 1437–1457. https://doi.org/10.1007/bf00553958.

    Article  Google Scholar 

  3. German, R.M. 1994. Powder metallurgy science, 279. Princeton: Metal Powder Industries Federation.

    Google Scholar 

  4. Benjamin, J.S. 1970. Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions 1 (10): 2943–2951. https://doi.org/10.1007/bf03037835.

    Google Scholar 

  5. Upadhyaya, G.S. 1997. Powder metallurgy technology, 160. Cambridge, UK: Cambridge Int Science Publishing.

    Google Scholar 

  6. Waseda, Y., and S. Suzuki. 2006. Characterization of corrosion products on steel surfaces. In Advances in materials research, 297. Berlin/Heidelberg: Springer.

    Google Scholar 

  7. McEwan, G.F. 2006. The Incas: New perspectives. In Understanding ancient civilizations series. Santa Barbara: Abc-Clio.

    Google Scholar 

  8. Guisbiers, G., S. Mejia-Rosales, S. Khanal, F. Ruiz-Zepeda, R.L. Whetten, and M. José-Yacaman. 2014. Gold–copper nano-alloy, “tumbaga”, in the era of nano: Phase diagram and segregation. Nano Letters 14 (11): 6718–6726. https://doi.org/10.1021/nl503584q.

    Article  Google Scholar 

  9. Hildeman, G.J., and M.J. Koczak. 2012. Aluminum powder metallurgy. JOM 38 (8): 30–32. https://doi.org/10.1007/bf03257784.

    Article  Google Scholar 

  10. Voss, D.P. 1979. Structure and mechanical properties of powder metallurgy 2024 and 7075 aluminum alloys, AFOSR 77-3440, Final Report, 289.

    Google Scholar 

  11. Vijeesh, V., and K. Narayan Prabhu. 2013. Review of microstructure evolution in hypereutectic Al–Si alloys and its effect on wear properties. Transactions of the Indian Institute of Metals 67 (1): 1–18. https://doi.org/10.1007/s12666-013-0327-x.

    Google Scholar 

  12. J.R. Davis & Associates, and ASM International. Handbook Committee. 1993. Aluminum and aluminum alloys. In ASM specialty handbook. Vol. iii, 784. Materials Park: ASM International.

    Google Scholar 

  13. Campbell, J., and ScienceDirect (Online service). 2011. Complete casting handbook metal casting processes, metallurgy, techniques and design. Oxford, UK/Waltham: Elsevier Butterworth-Heinemann. http://www.sciencedirect.com/science/book/9781856178099.

    Google Scholar 

  14. Campbell, J. 2015. Complete casting handbook metal casting processes, metallurgy, techniques and design. Amsterdam: Butterworth-Heinemann. http://www.sciencedirect.com/science/book/9780444635099.

    Google Scholar 

  15. ASM International Handbook Committee. 1998. ASM handbook, volume 02 – Properties and selection: Nonferrous alloys and special-purpose materials. Materials Park: ASM International.

    Google Scholar 

  16. Prabhu, V.V.K.N. 2014. Review of microstructure evolution in hypereutectic Al-Si alloys and its effect on wear properties. Transactions of the Indian Institute of Metals 67 (1): 1–18. https://doi.org/10.1007/s12666-013-0327-x.

    Article  Google Scholar 

  17. Eisen, W.B., B.L. Ferguson, R.M. German, R. Iacocca, P.W. Lee, D.S. Madan, K.E. Moyer, H. Sanderow, and Y. Trudel. 1998. ASM handbook, volume 07 - Powder metal technologies and applications. Materials Park: ASM International.

    Google Scholar 

  18. Jorstad, J., and D. Apelian. 2009. Hypereutectic Al-Si alloys: Practical casting considerations. International Journal of Metalcasting 3 (3): 13–36.

    Article  Google Scholar 

  19. Jorstad, J.L. 1971. The hypereutectic aluminum-silicon alloy used to cast the Vega engine block. Modern Casting 60 (4): 59–64.

    Google Scholar 

  20. ​Jorstad, J.L. 1978. Low-pressure process – Companion to die casting. Die Casting Engineer 22 (1): 10.

    Google Scholar 

  21. Jorstad, J.L. 1980. Influence of metallurgical factors on machinability of aluminum casting alloys. Die Casting Engineer 24 (6): 26–32.

    Google Scholar 

  22. Jorstad, J.L. 1984. Trends in aluminum casting. Pt. 1. Automotive applications. Modern Casting 74 (10): 26–29.

    Google Scholar 

  23. Jorstad, J.L. 2008. Permanent mold casting processes. Advanced Materials and Processes 166 (4): 30–34.

    Google Scholar 

  24. German, R.M. 2005. Powder metallurgy and particulate materials processing: The processes, materials, products, properties, and applications. Princeton: Metal Powder Industries Federation.

    Google Scholar 

  25. Ebrahimi, F., G.R. Bourne, M.S. Kelly, and T.E. Matthews. 1999. Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostructured Materials 11 (3): 343–350. https://doi.org/10.1016/S0965-9773(99)00050-1.

    Article  Google Scholar 

  26. Volkert, C.A., and E.T. Lilleodden. 2006. Size effects in the deformation of sub-micron Au columns. Philosophical Magazine 86 (33–35): 5567–5579. https://doi.org/10.1080/14786430600567739.

    Article  Google Scholar 

  27. Wyrzykowski, J.W., and M.W. Grabski. 1986. The Hall–Petch relation in aluminium and its dependence on the grain boundary structure. Philosophical Magazine A 53 (4): 505–520. https://doi.org/10.1080/01418618608242849.

    Article  Google Scholar 

  28. Mott, N.F., and F.R.N. Nabarro. 1940. An attempt to estimate the degree of precipitation hardening, with a simple model. Proceedings of the Physical Society 52 (1): 86.

    Article  Google Scholar 

  29. Callister, W.D. 2007. Materials science and engineering: An introduction. Vol. xxv. 7th ed, 122. New York: Wiley.

    Google Scholar 

  30. Reed-Hill, R.E., and R. Abbaschian. 1994. Physical metallurgy principles. In PWS series in engineering. Vol. xv. 3rd ed., 926. Boston: PWS Pub.

    Google Scholar 

  31. Ortner, S.R., C.R.M. Grovenor, and B.A. Shollock. 1988. On the structure and composition of G-P zones in high-purity AlZnMg alloys. Scripta Metallurgica 22 (6): 839–842. https://doi.org/10.1016/S0036-9748(88)80060-7.

    Article  Google Scholar 

  32. Benjamin, J.S., and T.E. Volin. 1974. The mechanism of mechanical alloying. Metallurgical Transactions 5 (8): 1929–1934. https://doi.org/10.1007/BF02644161.

    Article  Google Scholar 

  33. Benjamin, J.S. 1976. Mechanical alloying. Scientific American 234 (5): 40–48.

    Article  Google Scholar 

  34. Benjamin, J.S., and R.D. Schelleng. 1981. Dispersion strengthened aluminum-4 pct magnesium alloy made by mechanical alloying. Metallurgical Transactions A 12 (10): 1827–1832. https://doi.org/10.1007/bf02643766.

    Article  Google Scholar 

  35. Gilman, P.S., and J.S. Benjamin. 1983. Mechanical alloying. Annual Review of Materials Science 13 (1): 279–300.

    Article  Google Scholar 

  36. Benjamin, J.S. 1990. Mechanical alloying—A perspective. Metal Powder Report 45 (2): 122–127. https://doi.org/10.1016/S0026-0657(10)80124-9.

    Article  Google Scholar 

  37. Benjamin, J.S. 1992. Mechanical alloying-history and future potential. Advances in Powder Metallurgy and Particulate Materials 7: 155–155.

    Google Scholar 

  38. Soni, P.R., and ebrary Inc. 2001. Mechanical alloying fundamentals and applications. Cambridge, UK: Cambridge International Science Publishing. http://site.ebrary.com/lib/umich/Doc?id=10064335, http://libproxy.umflint.edu:2048/login?url=http://site.ebrary.com/lib/umich/Doc?id=10064335.

    Google Scholar 

  39. Suryanarayana, C., E. Ivanov, and V.V. Boldyrev. 2001. The science and technology of mechanical alloying. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 304: 151–158. https://doi.org/10.1016/S0921-5093(00)01465-9.

    Article  Google Scholar 

  40. Soni, P.R., and Books24×7 Inc. 2001. Mechanical alloying fundamentals and applications. Cambridge, UK: Cambridge International Science Pub. http://www.books24x7.com/marc.asp?bookid=14854.

    Google Scholar 

  41. Morsi, K., and A. Esawi. 2007. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)-CNT composite powders. Journal of Materials Science 42 (13): 4954–4959. https://doi.org/10.1007/s10853-006-0699-y.

    Article  Google Scholar 

  42. Guerrero-Paz, J., F.C. Robles-Hernandez, R. Martínez-Sánchez, D. Hernandez-Silva, and D. Jaramillo-Vigueras. 2001. Particle size evolution in non-adhered ductile powders during the mechanical alloying. Materials Science Forum 360: 317–322.

    Article  Google Scholar 

  43. Lee, W., and S.I. Kwun. 1996. The effects of process control agents on mechanical alloying mechanisms in the Ti-A1 system. Journal of Alloys and Compounds 240 (1–2): 193–199. https://doi.org/10.1016/0925-8388(96)02224-4.

    Article  Google Scholar 

  44. Shaw, L., M. Zawrah, J. Villegas, H. Luo, and D. Miracle. 2003. Effects of process-control agents on mechanical alloying of nanostructured aluminum alloys. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 34 (1): 159–170. https://doi.org/10.1007/s11661-003-0217-7.

    Article  Google Scholar 

  45. Madavali, B., J.H. Lee, J.K. Lee, K.Y. Cho, S. Challapalli, and S.J. Hong. 2014. Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling. Powder Technology 256: 251–256. https://doi.org/10.1016/j.powtec.2014.02.019.

    Article  Google Scholar 

  46. Lin, F., D.M. Jiang, and X.M. Ma. 2009. The effect of milling atmospheres on photocatalytic property of Fe-doped TiO2 synthesized by mechanical alloying. Journal of Alloys and Compounds 470 (1–2): 375–378. https://doi.org/10.1016/j.jallcom.2008.02.067.

    Google Scholar 

  47. Ong, T.S., and H. Yang. 2000. Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38 (15): 2077–2085. https://doi.org/10.1016/S0008-6223(00)00064-6.

    Article  Google Scholar 

  48. Ito, M., K. Majima, S. Katsuyama, and H. Nagai. 1996. Effect of milling atmosphere on the preparation of Sm2Fe17Nx powder by mechanical grinding (Reprinted from J Japan Inst Metals, vol 60, pg 427, 1996). Materials Transactions JIM 37 (11): 1704–1709.

    Article  Google Scholar 

  49. Suryanarayana, C., G.H. Chen, and F.H.S. Froes. 1992. Milling maps for phase identification during mechanical alloying. Scripta Metallurgica et Materialia 26 (11): 1727–1732. https://doi.org/10.1016/0956-716x(92)90542-M.

    Article  Google Scholar 

  50. Fogagnolo, J.B., F. Velasco, M.H. Robert, and J.M. Torralba. 2003. Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 342 (1–2): 131–143. https://doi.org/10.1016/S0921-5093(02)00246-0.

    Article  Google Scholar 

  51. Koch, C.C. 1989. Materials synthesis by mechanical alloying. Annual Review of Materials Science 19: 121–143. https://doi.org/10.1146/annurev.ms.19.080189.001005.

    Article  Google Scholar 

  52. Pérez-Bustamante, R., F. Pérez-Bustamante, I. Estrada-Guel, C.R. Santillán-Rodríguez, J.A. Matutes-Aquino, J.M. Herrera-Ramírez, M. Miki-Yoshida, and R. Martínez-Sánchez. 2011. Characterization of Al2024-CNTs composites produced by mechanical alloying. Powder Technology 212 (3): 390–396. https://doi.org/10.1016/j.powtec.2011.06.007.

    Article  Google Scholar 

  53. Ahamed, H., and V. Senthilkumar. 2010. Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying. Journal of Alloys and Compounds 505 (2): 772–782. https://doi.org/10.1016/j.jallcom.2010.06.139.

    Article  Google Scholar 

  54. Sivasankaran, S., K. Sivaprasad, R. Narayanasamy, and V.K. Iyer. 2010. An investigation on flowability and compressibility of AA 6061100 − x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technology 201 (1): 70–82. https://doi.org/10.1016/j.powtec.2010.03.013.

    Article  Google Scholar 

  55. Zheng, R., H. Yang, T. Liu, K. Ameyama, and C. Ma. 2014. Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles. Materials and Design 53: 512–518. https://doi.org/10.1016/j.matdes.2013.07.048.

    Article  Google Scholar 

  56. Estrada-Ruiz, R.H., R. Flores-Campos, J.M. Herrera-Ramírez, and R. Martínez-Sánchez. 2016. Mechanical properties of aluminum 7075–Silver nanoparticles powder composite and its relationship with the powder particle size. Advanced Powder Technology 27 (4): 1694–1699.

    Article  Google Scholar 

  57. Garibay-Febles, V., H.A. Calderon, F.C. Robles-Hernández, M. Umemoto, K. Masuyama, and J.G. Cabanas-Moreno. 2000. Production and characterization of (Al, Fe)-C (graphite or fullerene) composites prepared by mechanical alloying. Materials and Manufacturing Processes 15 (4): 547–567.

    Article  Google Scholar 

  58. Robles, F. 2004. Production and characterization of Fe-C graphite and Fe-C fullerene composites produced by different mechanical alloying techniques. Metalurgija 10 (2): 107–118.

    Google Scholar 

  59. Brysch, C., E. Wold, F.C. Robles Hernandez, and J.F. Eberth 2012. Sintering of chitosan and chitosan composites. In ASME 2012 international mechanical engineering congress and exposition. Houston: American Society of Mechanical Engineers.

    Google Scholar 

  60. Savio, A.K., D. Starikov, A. Bensaoula, R. Pillai, L.L. de la Torre García, and F.C. Robles Hernández. 2012. Tunable TiO2 (anatase and rutile) materials manufactured by mechanical means. Ceramics International 38 (5): 3529–3535.

    Article  Google Scholar 

  61. Fals, A.E., J. Quintero, and F.C. Robles Hernández. 2010. Manufacturing of hybrid composites and novel methods to synthesize carbon nanoparticles. MRS Proceedings 1276: 3. Cambridge University Press.

    Google Scholar 

  62. Santana-García, I., F. Hernandez-Robles, V. Garibay-Febles, and H.A. Calderon. 2010. Metal (Fe, Al)-fullerene nanocomposites: Synthesis and characterization. Microscopy and Microanalysis 16 (S2): 1688–1689.

    Article  Google Scholar 

  63. Robles Hernández, F.C., and H.A. Calderon. 2012. Nanostructured Al/Al 4 C 3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering. Materials Chemistry and Physics 132 (2): 815–822.

    Article  Google Scholar 

  64. Fals, A.E., V.G. Hadjiev, and F.C.R. Hernandez. 2012. Multi-functional fullerene soot/alumina composites with improved toughness and electrical conductivity. Materials Science and Engineering: A 558: 13–20.

    Article  Google Scholar 

  65. Fals, A.E., V. Hadjiev, and F.R. Hernández. 2013. Porous media reinforced with carbon soots. Materials Chemistry and Physics 140 (2): 651–658.

    Article  Google Scholar 

  66. Robles Hernández, F.C., H.A. Calderon, D. Barber, A. Okonkwo, R. Ordoñez Olivares and V. Hadjiev. 2014. Characterization of all carbon composites reinforced with in situ synthesized carbon nanostructures. MRS Proceedings 1611: 145–151. Cambridge University Press.

    Article  Google Scholar 

  67. Estrada-Guel, I., O. Anderson-Okonkwo, and F. Robles-Hernandez. 2016. In-situ transformation of amorphous soot into carbon-nanostructures by high-energy ball milling. Microscopy and Microanalysis 22 (S3): 1902–1903.

    Article  Google Scholar 

  68. Raming, T.P., W.E. van Zyl, E.P. Carton, and H. Verweij. 2004. Sintering, sinter forging and explosive compaction to densify the dual phase nanocomposite system Y2O3-doped ZrO2 and RuO2. Ceramics International 30 (5): 629–634. https://doi.org/10.1016/j.ceramint.2003.09.006.

    Article  Google Scholar 

  69. Hatch, J.E., A. Association, and A.S. Metals. 1984. Aluminum: Properties and physical metallurgy. Metals Park: American Society for Metals.

    Google Scholar 

  70. Robles Hernandez, F.C. 2004. Improvement in functional characteristics of aluminum-silicon cast components through the utilization of a novel electromagnetic treatment of liquid melts. Ph.D Thesis, University of Windsor (Canada).

    Google Scholar 

  71. Masuda, H., K. Higashitani, and H. Yoshida. 2006. Powder technology: Fundamentals of particles, powder beds, and particle generation. Boca Raton: CRC Press.

    Book  Google Scholar 

  72. Matsuura, K., M. Kudoh, H. Kinoshita, and H. Takahashi. 2003. Precipitation of Si particles in a super-rapidly solidified Al–Si hypereutectic alloy. Materials Chemistry and Physics 81 (2–3): 393–395. https://doi.org/10.1016/S0254-0584(03)00030-0.

    Article  Google Scholar 

  73. Ejiofor, J.U., and R.G. Reddy. 1997. Developments in the processing and properties of particulate Al-Si composites. JOM 49 (11): 31–37. https://doi.org/10.1007/s11837-997-0008-5.

    Article  Google Scholar 

  74. Omori, M. 2000. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Materials Science and Engineering: A 287 (2): 183–188. https://doi.org/10.1016/S0921-5093(00)00773-5.

    Article  Google Scholar 

  75. Munir, Z.A., U. Anselmi-Tamburini, and M. Ohyanagi. 2006. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science 41 (3): 763–777. https://doi.org/10.1007/s10853-006-6555-2.

    Article  Google Scholar 

  76. Gómez-Esparza, C.D., F.J. Baldenebro-López, C.R. Santillán-Rodríguez, I. Estrada-Guel, J.A. Matutes-Aquino, J.M. Herrera-Ramírez, and R. Martínez-Sánchez. 2014. Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying. Journal of Alloys and Compounds 615 (Supplement 1): S317–S323. https://doi.org/10.1016/j.jallcom.2014.01.233.

    Article  Google Scholar 

  77. Uzun, O., T. Karaaslan, M. Gogebakan, and M. Keskin. 2004. Hardness and microstructural characteristics of rapidly solidified Al–8–16 wt.% Si alloys. Journal of Alloys and Compounds 376 (1): 149–157.

    Article  Google Scholar 

  78. Cullity, B.D. 1956. Elements of X-ray diffraction. Reading: Addison-Wesley Pub. Co.

    Google Scholar 

  79. Chen, M., and A.T. Alpas. 2008. Ultra-mild wear of a hypereutectic Al-18.5 wt.% Si alloy. Wear 265 (1–2): 186–195. https://doi.org/10.1016/j.wear.2007.10.002.

    Article  Google Scholar 

  80. Hernandez, F.C.R., and J.H. Sokolowski. 2005. Identification of silicon agglomerates in quenched Al-Si hypereutectic alloys from liquid state. Advanced Engineering Materials 7 (11): 1037–1043.

    Article  Google Scholar 

  81. Hernandez, F.C.R., and J.H. Sokolowski. 2006. Thermal analysis and microscopical characterization of Al-Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190. https://doi.org/10.1016/j.jallcom.2005.07.077.

    Article  Google Scholar 

  82. Hernández, F.C.R., and J.H. Sokolowski. 2005. Novel image analysis to determine the Si modification for hypoeutectic and hypereutectic Al-Si alloys. JOM 57 (11): 48–52.

    Article  Google Scholar 

  83. Hernandez, F.C.R., J.H. Sokolowski, and J.D.C. Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51. https://doi.org/10.1002/adem.200600173.

    Article  Google Scholar 

  84. Kyffin, W., W. Rainforth, and H. Jones. 2001. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy. Journal of Materials Science 36 (11): 2667–2672. https://doi.org/10.1023/a:1017904627733.

    Article  Google Scholar 

  85. Lu, D.H., Y.H. Jiang, G.S. Guan, R.F. Zhou, Z.H. Li, and R. Zhou. 2007. Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Journal of Materials Processing Technology 189 (1–3): 13–18. https://doi.org/10.1016/j.jmatprotec.2006.12.008.

    Article  Google Scholar 

  86. Robles Hernandez, F.C., and J.H. Sokolowski. 2006. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys. Journal of Alloys and Compounds 426 (1–2): 205–212. https://doi.org/10.1016/j.jallcom.2006.09.039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Robles Hernandez, F.C., Herrera Ramírez, J.M., Mackay, R. (2017). Powder Metallurgy. In: Al-Si Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-58380-8_4

Download citation

Publish with us

Policies and ethics