Advertisement

Terminological Cluster Trees for Disjointness Axiom Discovery

  • Giuseppe RizzoEmail author
  • Claudia d’Amato
  • Nicola Fanizzi
  • Floriana Esposito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10249)

Abstract

Despite the benefits deriving from explicitly modeling concept disjointness to increase the quality of the ontologies, the number of disjointness axioms in vocabularies for the Web of Data is still limited, thus risking to leave important constraints underspecified. Automated methods for discovering these axioms may represent a powerful modeling tool for knowledge engineers. For the purpose, we propose a machine learning solution that combines (unsupervised) distance-based clustering and the divide-and-conquer strategy. The resulting terminological cluster trees can be used to detect candidate disjointness axioms from emerging concept descriptions. A comparative empirical evaluation on different types of ontologies shows the feasibility and the effectiveness of the proposed solution that may be regarded as complementary to the current methods which require supervision or consider atomic concepts only.

References

  1. 1.
    Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications, 1st edn. Chapman & Hall/CRC, Boca Raton (2013)zbMATHGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  3. 3.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M. (ed.) Proceedings of IJCAI 2007, pp. 230–235. AAAI Press, Menlo Park (2007)Google Scholar
  4. 4.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1–2), 285–297 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cornet, R., Abu-Hanna, A.: Usability of expressive description logics - a case study in UMLS. In: Kohane, I. (ed.) Proceedings of AMIA 2002, pp. 180–184. AMIA (2002)Google Scholar
  6. 6.
    d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: an inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68234-9_23CrossRefzbMATHGoogle Scholar
  7. 7.
    De Raedt, L., Blockeel, H.: Using logical decision trees for clustering. In: Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 133–140. Springer, Heidelberg (1997). doi: 10.1007/3540635149_41CrossRefGoogle Scholar
  8. 8.
    Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 442–457. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15880-3_34CrossRefGoogle Scholar
  9. 9.
    Fanizzi, N., d’Amato, C.: A hierarchical clustering method for semantic knowledge bases. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS (LNAI), vol. 4694, pp. 653–660. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74829-8_80CrossRefGoogle Scholar
  10. 10.
    Fanizzi, N., d’Amato, C., Esposito, F.: Evolutionary conceptual clustering based on induced pseudo-metrics. Int. J. Semant. Web Inf. Syst. 4(3), 44–67 (2008)CrossRefGoogle Scholar
  11. 11.
    Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meersman, R., et al. (eds.) OTM 2011. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25106-1_20CrossRefGoogle Scholar
  12. 12.
    Haase, P., Völker, J.: Ontology learning and reasoning: dealing with uncertainty and inconsistency. In: da Costa, P., et al. (eds.) Uncertainty Reasoning for the Semantic Web I. LNCS, vol. 5327, pp. 366–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, San Rafael (2011)Google Scholar
  14. 14.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semant. Web Inf. 5(2), 25–48 (2009)CrossRefGoogle Scholar
  15. 15.
    Lehmann, J., Bühmann, L.: ORE - a tool for repairing and enriching knowledge bases. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17749-1_12CrossRefGoogle Scholar
  16. 16.
    Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Induction of terminological cluster trees. In: Bobillo, F., et al. (ed.) Proceedings of URSW 2016. CEUR Workshop Proceedings, vol. 1665, pp. 49–60. CEUR-WS.org (2016)Google Scholar
  17. 17.
    Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005). doi: 10.1007/11431053_16CrossRefGoogle Scholar
  18. 18.
    Völker, J., Fleischhacker, D., Stuckenschmidt, H.: Automatic acquisition of class disjointness. J. Web Semant. 35(P2), 124–139 (2015)CrossRefGoogle Scholar
  19. 19.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21034-1_9CrossRefGoogle Scholar
  20. 20.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72667-8_14CrossRefGoogle Scholar
  21. 21.
    Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 682–694. Springer, Heidelberg (2006). doi: 10.1007/11926078_49CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giuseppe Rizzo
    • 1
    Email author
  • Claudia d’Amato
    • 1
  • Nicola Fanizzi
    • 1
  • Floriana Esposito
    • 1
  1. 1.LACAM – Dipartimento di InformaticaUniversità degli Studi di Bari “Aldo Moro”BariItaly

Personalised recommendations