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Abstract. Despite the benefits deriving from explicitly modeling con-
cept disjointness to increase the quality of the ontologies, the number of
disjointness axioms in vocabularies for the Web of Data is still limited,
thus risking to leave important constraints underspecified. Automated
methods for discovering these axioms may represent a powerful model-
ing tool for knowledge engineers. For the purpose, we propose a machine
learning solution that combines (unsupervised) distance-based clustering
and the divide-and-conquer strategy. The resulting terminological cluster
trees can be used to detect candidate disjointness axioms from emerg-
ing concept descriptions. A comparative empirical evaluation on different
types of ontologies shows the feasibility and the effectiveness of the pro-
posed solution that may be regarded as complementary to the current
methods which require supervision or consider atomic concepts only.

1 Introduction

With the growth of the Web of Data, along with the Linked Data initiative [13],
a large number of datasets are being published using a standard data model that
connects lots of knowledge bases within a uniform semantic space. In this context,
Web ontologies are used as formal vocabularies that support many important
services based on automated reasoning, such as classification, query answering,
population and enrichment, or reconciliation (instance matching). In this per-
spective, ontologies represent a means to ensure the quality of data.

Debugging strategies may be employed to prevent the introduction of con-
flicting assertions that hinder the employment of reasoning services. However
many ontologies still represent simplified data models for the targeted domain
failing to capture some underlying intended constraints [21]. A common problem
is the lack of an explicit representation of negative knowledge, usually expressed
in the form of disjointness axioms. Conversely, the acquisition of such axioms
may enhance the mentioned rich services.

In the literature, sundry approaches for discovering disjointness axioms have
been proposed. Recent methods apply association rule mining [18,19]. However,
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they can capitalize on the available of intensional knowledge only to some mar-
ginal extent. In these works, heterogeneous sources are exploited, with most of
the features being lexical, also based on external corpora. Additionally, most of
the approaches move from the assumption that disjointness may hold among
concepts when the sets of their instances, that can be thought of as empiri-
cal approximations of their extensions, do not tend to overlap [11,20]. Hence a
more data-driven approach could be exploited: it may derive from finding par-
titions of similar individuals occurring in the knowledge base according to some
criterion of choice, by maximizing the separation (i.e. minimizing the overlap)
among different partitions. This objective boils down to a clustering problem [1]
which is a classic topic in machine learning. In the context of the Semantic Web
(SW), clustering methods for individuals described by ontologies have been pro-
posed, extending classic algorithms such as k-means or k-medoids [9] with the
ability of taking into account intensional knowledge. They have been mainly
employed for concept learning or for the automated detection of concept drift or
novelty [10].

In the line of the unsupervised statistical approaches, ours relies on methods
that produce hierarchical clustering structures, while taking into account the
intensional knowledge provided by the ontology. The goal is to derive potential
disjointness axioms, by exploiting the background knowledge on the schema,
similarly to relational learning frameworks [15]. Indeed, we adopt an approach
based on conceptual clustering, that aims at learning intensional descriptions of
emerging clusters of individuals that may involve even complex concept descrip-
tions, differently from other unsupervised approaches. Our solution is based on a
novel form of logical tree model [7], dubbed terminological cluster tree [16], that
can be regarded as an extension of the terminological decision tree [8]. Both
are produced through divide-and-conquer algorithms, but while the latter are
essentially classifiers that solve supervised concept learning problems exploiting
information-based heuristics (information gain or other purity measures), the
former rely on specific metrics and on a notion of cluster prototype [9,10].

Unlike other (unsupervised) clustering models, the proposed solution also
aims at intensional definitions of the clusters, i.e. concept descriptions that
describe their individuals. Another advantage is that the number of clusters –
which has a strong impact on the quality of the clustering structure – is not a
required parameter; conversely, descends from the number of dense data regions
found in the given instance space. Indeed, in the induction of (terminological)
cluster trees this number depends on a notion of purity, that determines the
stop condition for further branchings to prevent compromising the clusters sep-
aration. Once the tree is grown, groups of (disjoint) clusters located at sibling
nodes identify concepts involved in candidate disjointness axioms to be derived.
The discovered axioms can be validated by a domain expert/ontology engineer
and/or may even be automatically involved in a debugging process for eliciting
cases of inconsistency which cannot arise when disjointness axioms are lacking.

Summary. In the next section, related works are briefly surveyed. In Sect. 3,
disjointness axiom discovery problem is formalized as a clustering problem for
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individuals in a knowledge base. Section 4 illustrates the approach to the induc-
tion of terminological cluster trees and their application to the targeted problem.
Section 5 presents a comparative experimental evaluation of the proposed solu-
tion on common ontologies. Finally, Sect. 6 concludes this work delineating future
research directions.

2 Related Work

The problem of discovering the disjointness axioms to enrich and improve the
quality of ontological knowledge bases has been receiving a growing attention.
In early works, the mentioned strong disjointness assumption [5] (SDA), which
states that the children of a common parent in the subsumption hierarchy
should be disjoint, has been exploited in a pinpointing algorithm for seman-
tic clarification (i.e. the process of automatically enriching ontologies by appro-
priate disjointness statements [17]. Focusing first on text and successively on
RDF datasets, unsupervised methods for mining axioms, including disjointness
axioms, have been proposed [12,20]. Their main limitation is the inability to
exploit background knowledge, which on the contrary may help in increasing the
number of axioms discovered while filtering out unnecessary or wrong axioms.
The main limitations of supervised methods is the necessity of axioms for train-
ing that may demands costly work by domain experts.

Besides, methods based on relational learning [15] and formal concept analy-
sis [3] have been proposed, but none specifically aimed at assessing the qual-
ity of the induced axioms. This is pointed out also in [19] and additional
approaches [11,18] based on association rule mining have been introduced to
better address this limitation. The goal was studying the correlation between
classes. Specifically, (negative) association rules and the use of a correlation coef-
ficient have been considered. Also in these cases, background knowledge is not
explicitly exploited. In [15], a tool for repairing various types of ontology mod-
eling errors is described; it uses methods from the DL-Learner framework [14]
to enrich ontologies with axioms induced from existing instances.

Our solution is based on an unsupervised approach, deriving from previ-
ous works on concept learning and inductive classification [6]. Specifically, we
propose a hierarchical conceptual clustering method that is able to provide
intensional cluster descriptions. It exploits a novel form of a family of semi-
distances for the individuals in knowledge bases [6] which involves reasoning on
the knowledge base. The method is grounded on the notion of medoid as cluster
prototype to give a topological structure to the representation of the instance
space [1]. Related, but partitive clustering approaches [1], such as the bisecting

k-medoids [9] or the partition around medoids, combined with evolutionary pro-
gramming [10] have been proposed. They cluster individuals in Web ontologies
by exploiting metrics that are related to those adopted in this work. They can
be easily extended for producing hierarchical structures of clusters. However, the
derivation of related concepts as intensional definitions for the clusters requires
the adoption of additional and suitable concept learning algorithms.
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Specifically, the method proposed in this paper relies on logic tree models [4]
which essentially adopt a divide-and-conquer strategy to derive a hierarchical
structure. The learning method can work both in supervised and unsupervised
mode, depending on the availability of information about the instance classi-
fication to be exploited for separating sub-groups of instances. Terminological
decision trees were derived [8] in the former case, while for the latter case, first-
order logic clustering trees [7] were proposed to induce concepts expressed in
clausal logics for the clusters. The C0.5 system, which is integrated in the Tilde

framework [4], is able to induce concepts as conjunctions of literals (clause bod-
ies) installed at inner nodes. Almost all these exiting methods are grounded
on the exploitation of an heuristic based on the information gain, employed in
the supervised case. Differently, our approach tends to maximize the separa-
tion between cluster medoids according to a semi-distance measure that can be
also computed before the learning phase [6] making a more efficient use of the
computationally expensive reasoning services.

3 Disjointness Discovery as a Conceptual Clustering
Problem

In this section, we formalize the problem of discovering concept disjointness
axioms from an ontological knowledge base in terms of a clustering task. We
will borrow notation and terminology from Description Logics (DLs) [2], being
the theoretical foundation of the standard representation languages for the SW.
Hence, we will use the terms concept (description) and role as synonyms of
class and property, respectively and we will denote a knowledge base (KB) with
K = 〈T,A〉, where T is the TBox (containing terminological axioms regard-
ing concepts and roles) and A is the ABox (containing concept/role assertions
regarding individuals). Ind(A) will denote the set of individuals (resource names)
occurring in A. Subsumption, equivalence and logic entailment will be denoted
with the usual symbols.

Before formalizing the problem of discovering concept disjointness axioms,
for the sake of clarity and completeness, we recall some basic clustering methods.
Clustering is an unsupervised learning task aiming at grouping a collection of
objects into subsets or clusters, such that those within each cluster are more
closely related/similar to one another, than objects assigned to different clus-
ters [1]. In the general setting, an object is usually described in terms of features
from a selected set F ; a measure of similarity between objects is expressed in
terms of a distance function, e.g. in the case of attribute-value datasets of objects
that are often described by tuples of numeric features, the Euclidean distance
(or its extensions) is typically adopted. A more complex goal is to move from
flat to natural hierarchical clustering structures. Another difference among the
various clustering models is related to the form of membership of the objects
with respect to the clusters. In the simplest (crisp) case, e.g. k-means, cluster
membership can be exclusive: each object belongs to one cluster. Extensions,
such as fuzzy c-means or EM [1], admit overlapping clusters as the objects
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exhibit a graded membership (responsibility) w.r.t. the clusters. An interest-
ing class of methods is represented by the conceptual clustering approaches.
In the resulting clustering structures, the objects are arranged into clusters that
are intentionally, rather than extensionally, defined. Differently from other meth-
ods, conceptual clustering algorithms may exploit available background knowl-
edge for building descriptions for each cluster. Besides the propositional data rep-
resentations (or the equivalent vector spaces mentioned above) more expressive
data representation, e.g. through richer logic languages may be necessary. When
such expressive representations are considered, suitable (dis)similarity measures
have to be adopted.

Moving from the observation that a disjointness axiom, involving two or more
concepts, may hold if their extensions do not overlap (as introduced in Sect. 1),
the task of discovering disjointness axioms may be regarded as an unsupervised
conceptual clustering problem aiming at finding separate partitions of individuals
of the KB (such that each subset consists of similar individuals, according to a
given similarity criterion) and producing intensional descriptions for them. The
problem is defined as follows:

Definition 3.1 (Disjointness axiom discovery as a conceptual cluster-
ing problem)

Given
– a knowledge base K = 〈T ,A〉
– a set of training individuals I ⊆ Ind(A)
Find
– a partition Π of I in a set of pairwise disjoint clusters Π = {C1, . . . ,C|Π|}
– for each i = 1, . . . , |Π|, a concept description Di that describes Ci, so that:

∀a ∈ Ci : K |= Di(a) and
∀b ∈ Cj , j �= i : K |= ¬Di(b).
Hence ∀Di,Dj , i �= j : K |= Dj � ¬Di.

Note that the number of clusters (say K = |Π|) is not a required parameter to
be provided tentatively. Also note that, the problem of discovering disjointness
axioms resorting to machine learning methods can be formalized in different
ways, depending on the type of approach (supervised or unsupervised) to be
employed. In the next section, a solution to the formalized problem is presented.

4 Terminological Cluster Trees for Disjointness Learning

The proposed approach is grounded on a two-steps process. In the first step,
given a knowledge base, clusters and the related concepts that describe them
are discovered and organized in a tree structure. In the second step, the induced
structure is exploited for learning a set of disjointness axioms. The model can
be formally defined as follows:

Definition 4.1 (Terminological cluster tree). Given a knowledge base K, a
terminological cluster tree (TCT) is a binary logical tree where each node stands
for a cluster of individuals C and such that:
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Algorithm 1. Routines for inducing a TCT

1 const ν, δ: thresholds
2

3 function induceTCT(I, C): TCT
4 input I: set of individuals
5 C: concept description
6 begin

7 T ← new TCT
8 if stopCondition(I, ν) then

9 T ← 〈null, I, null, null〉
10 else

11 S ← ρ(C) {set of candidate specializations}
12 E∗ ← selectBestConcept(S, I)
13 〈Ileft, Iright〉 ← split(I, E∗)

14 Tleft ← induceTCT(Ileft, E∗)
15 Tright ← induceTCT(Iright, ¬E∗)

16 T ← 〈E∗, I, Tleft, Tright〉
17 return T

18 end

19 function split(I, E): pair of sets of individuals
20 input I: set of individuals
21 E: concept description
22 begin

23 〈P, N〉 ← retrievePosNeg(I, E, δ)
24 b ← p(P) { prototype }
25 c ← p(N) { prototype }
26 Ileft ← ∅
27 Iright ← ∅
28 for each a ∈ I

29 if d(a, b) ≤ d(a, c) then

30 Ileft ← Ileft ∪ {a}
31 else

32 Iright ← Iright ∪ {a}
33

34 return 〈Ileft, Iright〉
35 end

– each node contains a concept D (defined over the signature of K) describing C;
– each edge departing from an internal node corresponds to the outcome of the

membership test of individuals with respect to D.

A tree-node is represented by a quadruple 〈D,C, Tleft, Tright〉 with the left and
right subtrees connected by either departing edge.

The construction of the model combines elements of logical decision trees
induction (recursive partitioning and refinement operators for specializing con-
cept descriptions) with elements of instance-based learning (a distance mea-
sure over the instance space). The details of the algorithms for growing a TCT
(step 1.) and deriving intensional definitions of disjoint concepts (step 2.) are
reported in the sequel.

4.1 Growing Terminological Cluster Trees

A TCT T is induced by means of a recursive strategy (see Algorithm 1), which
follows the schema proposed for terminological decision trees (TDTs) [8]. The
ultimate goal is to find a partition of pure clusters.

The main routine induceTCT is to be invoked passing I and 	 as parame-
ters. In this recursive function, the base case tests the stopCondition predicate,
i.e. whether the measure of cohesion of the cluster I exceeds a given threshold
ν. Further details about the heuristics and the stop condition will be reported
later on.

In the inductive step, which occurs when the stop condition does not hold, the
current (parent) concept description C has to be specialized using a refinement
operator (ρ) that spans over a search space of concepts subsumed by C. A set
of candidate specializations S = ρ(C) is obtained. For each E ∈ S, the sets of
positive and negative individuals, i.e. the instances of E and of ¬E, respectively
denoted by P and N, are retrieved by retrievePosNeg. A tricky situation
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may occur when either N or P is empty for a given E (e.g. in the absence
of disjointness axioms). In such a case, retrievePosNeg assigns individuals
in I\P to N (resp. in I\N to P) when the distance between them and the
prototype of P (resp. N) exceeds the threshold δ. A representative element for
P and N is determined as a prototype, i.e. their medoid, a central element with
the minimal average distance w.r.t. the other elements in the cluster. Then,
function selectBestConcept evaluates the candidate specializations in terms
of the cluster separation computed through a heuristic (see Eq. 1) and returns the
best concept E∗ ∈ S, that is the one for which the distance between the medoids
of the related positive and negative sets is maximized. Then E∗ is installed in
the current node. Hence, the individuals are partitioned by split to be routed
along the left or right branch of E∗. Differently from TDTs, the routine does not
decide the branch where the individuals will be sorted according to a concept
membership test (instance check): it splits individuals according to the distance
w.r.t. the tow prototypes, i.e. the medoids of P and N.

This divide-and-conquer algorithm is applied recursively until the instances
routed to a node satisfy the stop condition. Note that, the number of the clusters
is not required as an input but it depends on the number of branches grown: it
is naturally determined by the algorithm according to the data distribution in
the regions of the instance space.

The proposed approach relies on a downward refinement operator that can
generate the concepts to be installed in child-nodes performing a specialization
process on the concept, say C, installed in a parent-node or its complement:

ρ1 by adding a concept atom (or its complement) as a conjunct: C ′ = C 
 (¬)A;
ρ2 by adding a general existential restriction (or its complement) as a conjunct:

C ′ = C 
 (¬)(∃)R.	;
ρ3 by adding a general universal restriction (or its complement) as a conjunct:

C ′ = C 
 (¬)(∀)R.	;
ρ4 by replacing a sub-description Ci in the scope of an existential restriction in

C with one of its refinements: ∃R.C ′
i ∈ ρ(∃R.Ci) ∧ C ′

i ∈ ρ(Ci);
ρ5 by replacing a sub-description Ci in the scope of a universal restriction with

one of its refinements: ∀R.C ′
i ∈ ρ(∀R.Ci) ∧ C ′

i ∈ ρ(Ci).

Note that the cases of ρ4 and ρ5 are recursive. Please, also note that the refine-
ment operator take the KB (and particularly the TBox) strictly into account.
Indeed refinements that are consistent with the KB are always returned.

The algorithms for growing TCTs and TDTs share a common structure but
differ on the criterion for selecting the test concepts installed in the nodes: while
information gain is adopted by the latter, the procedure for TCTs resorts to
a measure of distance defined over the individuals occurring in the knowledge
base. Specifically, the heuristic for selecting the best refinement of the parent
concept is defined as follows:

E∗ = argmax
D∈ρ(C)

d (p(P), p(N)) (1)
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where P and N are sub-clusters output by retrievePosNeg(I,D, δ), d(·, ·) is a
distance measure between individuals and p(·) is a function that maps a cluster
to its prototype. As previously mentioned, the adopted p(·) computes the medoid
of the cluster.

The required measure for individuals should capture aspects of their seman-
tics in the context of the KB. We resort to variation of a language-independent
dissimilarity measure proposed in previous works [6,9,10]. Given the knowledge
base K, the idea is to compare the behavior of the individuals w.r.t. a set of
concepts C = {C1, C2, . . . , Cm} that is dubbed context or committee of features.
For each Ci ∈ C, a projection function πi : Ind(A) → [0, 1] is defined as a simple
mapping:

∀ a ∈ Ind(A) πi(a) =

⎧
⎪⎨

⎪⎩

1 if K |= Ci(a)
0 if K |= ¬Ci(a)
0.5 otherwise

(2)

where the third value (0.5) represents a case of maximal uncertainty on the mem-
bership. As an alternative, the estimate of the likelihood for a generic individual a
of being an instance of Ci could be considered. Especially with densely populated
ontologies (as those forming the Web of Data) the probability Pr[K |= Ci(a)]
may be estimated by |rK(Ci)|/|Ind(A)|, where rK() denotes the retrieval of a
concept w.r.t. K, i.e. the set of individuals of Ind(A) that (can be proven to)
belong to Ci [2].

Hence, a family of distance measures {dC
n}n∈N can be defined as follows:

dC
n : Ind(A) × Ind(A) → [0, 1] with

dC
n(a, b) =

[
m∑

i=1

wi [1 − πi(a)πi(b)]
n

]1/n

(3)

Non uniform values for w can be considered to reflect the specific importance
of each feature. For example it may be set according to an entropic measure [6,10]
based on the average information brought by each concept:

∀i ∈ {1, . . . , m} wi = −
∑

k∈{−1,0,+1}
μi(k) log μi(k) (4)

where, given a generic a ∈ Ind(A), the following estimates can be used: μi(+1) ≈
Pr[K |= Ci(a)], μi(−1) ≈ Pr[K |= ¬Ci(a)] and μi(0) = 1 − μi(+1) − μi(−1).

The growth of a TCT can be stopped by resorting to a heuristic that is similar
to the one employed for selecting the best concept description. This requires the
employment of a threshold ν ∈ [0, 1] for the value of d(·, ·). If the value is lower
than the threshold, the branch growth is stopped.

4.2 Extracting Candidate Disjointness Axioms from TCTs

The procedure for discovering/extracting disjointness axioms requires a TCT as
input. It is reported in Algorithm2.
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Algorithm 2. Routines for deriving disjointness axioms from a TCT

1 function deriveCandidateAxioms(T ): set of

axioms

2 input T : TCT

3 begin

4 A ← ∅
5 CS ← collect(�, T )

6 for each C ∈ CS do

7 for each D ∈ CS do

8 if (D � ¬C) /∈ A and C �≡ D then

9 A ← A ∪ {D � ¬C}
10 return A

11 end

12 function collect(C, T ): set of concepts

13 input C: concept description

14 T : TCT

15 begin

16 let T = 〈D, I, Tleft, Tright〉
17 if Tleft = Tright = null then { leaf }
18 return {C}
19 else

20 CSleft ← collect(C � D,Tleft)

21 CSright ← collect(¬C � ¬D,Tright)

22 return (CSleft ∪ CSright)

23 end

Given a TCT T , function deriveCandidateAxioms traverses the tree to
collect the concept descriptions that are used as parents of the leaf-nodes. In
this phase, it generates a set of concept descriptions CS, collecting the concepts
installed in leaf-nodes (see collect). Then, it considers all pairs of elements in
CS that are not equivalent and adds a disjointness axiom D � ¬C, if it does
not already occur in it.

The set of concept descriptions CS is obtained traversing the tree. The pro-
cedure collect tries to find the concept descriptions for which disjointness
axioms may hold by exploring the paths from the root the leaves by collecting
the concepts description installed in the internal nodes.

Note that the hierarchical nature of the approach allows one to generalize this
function, controlling the maximum depth of the tree traversal with a parameter.
This would produce fewer and more general axioms than the case reported above.

5 Experiments

Two experimental evaluation sessions have been performed to assess the feasi-
bility of discovering disjointness axioms through our approach based on TCTs1.
We also compared our method with two related statistical methods that have
been recently proposed (see Sect. 2).

In the first session of experiments, we considered Web ontologies, freely
available, containing disjointness axioms and describing various domains,
namely: BioPax, New Testament Names (NTN), Financial, Geoskills,
Monetary, and DBpedia. In the second experimental session we also consid-
ered Mutagenesis and Vicodi (that originally lack of disjointness axioms).
Their principal characteristics are summarized in Table 1. The distance measure
dC
2 was employed by our method, with a context of features C made up of the

atomic concepts in each KB.
The method has been tested on the problem of (re)discovering disjointness

axioms previously removed from the KB: (a) in the first session single axioms
are targeted; (b) in the second session comparative experiments on versions of
the ontologies enriched with further disjointness axioms (by virtue of the SDA)
have been performed.
1 Code and test ontologies are available at: http://github.com/Giuseppe-Rizzo/TCT.

http://github.com/Giuseppe-Rizzo/TCT
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Table 1. Ontologies employed in the experimental sessions

Ontology DL language #Concepts #Roles #Individuals #Disj. Ax.’s

BioPax ALCIF(D) 74 70 323 85

NTN SHIF(D) 47 27 676 40

Financial ALCIF(D) 60 16 1000 113

GeoSkills ALCHOIN (D) 596 23 2567 378

Monetary ALCHIF(D) 323 247 2466 236

DBPedia3.9 ALCHI(D) 251 132 16606 11

Mutagenesis AL(D) 86 5 14145 0

Vicodi ALHI(D) 196 10 16942 0

For each experimental session, the targeted problem and the parameter setup
are described, then the outcomes are discussed.

5.1 Re-discovery of a Target Disjoint Axiom

Settings. In this session, a copy of each ontology was created removing a target
disjointness axiom. Each copy was employed to extract a training set: given the
target axiom, say C � ¬D, we considered only individuals that belong to C and
D to induce the TCTs. Table 2 lists C and D of the removed axioms for each
ontology.

The experiment was repeated picking various values for the threshold ν con-
trolling the tree growth in Algorithm1; we report the results for ν = 0.9, 0.8, 0.7.
The value for δ set to 0.6. The effectiveness of the method was evaluated in terms
of the number of cases of inconsistency that were due to the addition of discovered
axioms.

Table 2. Summary of the axioms (C � ¬D) removed from each ontology in the first
experiment

Ontology C D

BioPax bioSource xref

NTN Man Populace � Woman � Supernatural Being

Financial PermanentOrder Account � Region

GeoSkills Educational Level Educational Pathway

Monetary ISO3166-Country Code ISO31813-Market Identifier Code �
ISO4217-Currency Code

DBpedia3.9 Activity Person
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Outcomes. Table 3 illustrates the results of this session. Preliminarily it is
worthwhile to note that the new method was able to rediscover the target
disjointness axioms for all ontologies but DBPedia3.9, as discussed in the
following, and it could also determine new axioms regarding concept descrip-
tions that were equivalent to those considered in the target axioms. This
case depended on the definition of ρ and on the presence of equivalence
axioms in the knowledge bases: ρ assumes that all the concept names are dis-
tinct regardless of the existence of equivalence and subsumption axioms. As
a result, the operator could produce potentially redundant intensional defin-
itions. For example, in the case of BioPax bioSource in the target axiom is
alternatively described by ExternalReferenceUtilityClass 
 ∃TAXONREF.	 (with
ExternalReferenceUtilityClass � bioSource and being bioSource the domain of
the role TAXONREF) and xref that is equivalent to ¬ExternalUtilityClass 

PublicationXRef 
 ¬dataSource. Also, in the experiments with NTN, the pro-
posed method suggested the disjointness between ¬SupernaturalBeing
Person

hasSex.Male (≡ Man) and SupernaturalBeing 
 God (≡ God, since God �
SupernaturalBeing).

Table 3. Number of inconsistencies (#inc.) and total number of discovered axioms
(#ax’s) in the first experimental session (with varying values of ν)

Ontology TCT 0.9 TCT 0.8 TCT 0.7

#inc #ax’s #inc #ax’s #inc #ax’s

BioPax 2 53 2 53 3 52

NTN 10 70 9 73 10 75

Financial 0 125 0 126 0 127

GeoSkills 2 345 1 347 4 347

Monetary 0 432 0 432 0 433

DBPedia3.9 45 45 44 44 43 43

Moreover, the number of inconsistencies caused by the addition of axioms
derived from the TCTs was quite small, especially when compared to the num-
ber of axioms predicted (see Table 3). Noticeably, in the cases of BioPax and
NTN most of the instances were routed to two leaves, while the others were
empty, yielding a large number of further new axioms. In such cases, the dis-
jointness axioms involving concept descriptions that correspond to the empty
clusters can be added to the knowledge base with no risk of making it incon-
sistent. In the experiments with larger ontologies, e.g. Financial, Monetary

and GeoSkills, very few empty clusters were observed because of the larger
training sets, increasing the quality of clustering and of the derived axioms.

By way of ρ the algorithm can exploit all the concepts (and roles) defined
in the signature of K, but it generally considers only a subset of individuals
that occur in the ABox, I ⊆ Ind(A). Therefore the heuristic wrongly favored
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refinements that tended to generate poor splits, sorting most of the individuals
along one branch. This represents a sort of small disjunct problem that typically
affects concept learning (with TDTs). However, we noted that this issue seldom
occurred with larger training sets. Decreasing the threshold ν (that controls the
depth of the branches), no significant difference was observed, because of the
homogeneity of the individuals routed to the nodes.

The case of DBPedia3.9 deserves a deeper analysis. We observed that
instances of a concept like Person hardly discernible in terms of the distance
measure (given the choice of C). However, as an inner concept Person was
further refined into a number of sibling specializations leading to disjointness
axioms involving more specific concepts. Thus, the method ended up finding
disjointness axioms between pairs of more specific concepts like Activity and
Person
∃nationality.United states owing to the presence in the training set of var-
ious individuals that describe American citizens. Also, the new method allowed
to elicit a disjointness axiom between Activity and a concept describing non-
American artists. This is a potential drawback of data-driven methods that con-
sider general axioms including complex concepts instead of mere concept names.
In our case this issue can be avoided with a more careful tuning of the parame-
ters (thresholds) that control the growth of the tree, to prevent the involvement
of overly specific concepts.

The time required for learning TCTs was quite limited spanning from few sec-
onds (on BioPax) up to one hour (on Monetary), especially depending on the
number of concepts and axioms in the ontologies. Further factors that affected
the efficiency of the proposed approach were the inference services required by ρ
(e.g. checking the satisfiability of computed specializations) and the computation
of the medoids.

5.2 Comparison to Other Approaches Under SDA

Settings. In the second experiment, we considered two further knowledge bases
(excluded from the previous experiments due to the mentioned lack of disjoint-
ness axioms): Mutagenesis and Vicodi. We considered extended versions of
the ontologies reported in Table 1. Specifically, in order to test our method in
comparison with two described in Sect. 2, in a scenario where the ontologies fea-
ture non trivial numbers of disjointness axioms, new versions were produced by
adding disjointness axioms that involve sibling concepts in the hierarchy, accord-
ing to the SDA, provided that they would keep the ontology consistent. Then,
for each ontology, a fraction f of disjointness axioms was randomly removed.
To determine unbiased estimates of the performance indices (i.e. independent
of the specific selection of axioms removed), the empirical evaluation procedure
was repeated 10 times per ontology also varying f : 20%, 50%, 70%.

Adopting the same parameter setup of the previous session, our method was
compared against two related methods (see Sect. 2), respectively, one based on
Pearson’s correlation coefficient (PCC) and another exploiting negative asso-
ciation rules (NAR). As for the latter, rules were mined using Apriori; the



196 G. Rizzo et al.

required parameters, minimum support rate, minimum confidence rate and max-
imum rule length were set, respectively, to 10%, 50% and 3 (also in consideration
of the sparseness of the instance distributions w.r.t. the concepts in the consid-
ered ontologies). The effectiveness of the methods was evaluated in terms of the
average number of inconsistencies caused by the addition of discovered axioms
(the less the better) and of the average number of axioms that were discovered
and rate of removed axioms re-discovered (the larger the better).

Outcomes. In general, the method based on TCTs produced good clusterings of
the training sets: the clusters were well-described by the concept descriptions in
the TCTs.

As expected, the number of discovered axioms generally decreased with larger
fractions of axioms removed since the resulting trees showed generally a less
complex structure. Moreover the experiments showed that a nonnegligible impact
on the effectiveness can come from properly tuning the threshold ν. Also, a
sort of horizon effect was observed: the heuristic based on distance measure
acted as a sort of pre-pruning criterion that stopped the growth of the tree
too prematurely. In addition, in some case, TCTs with (nearly) empty clusters
were produced. This was due to the mentioned cases of imbalanced instance
distributions w.r.t. the various concepts: for example concepts with few instances
are frequent in Financial, but such cases occur also in the other ontologies.
However, this phenomenon was mitigated by the presence of an overall larger
number of individuals to be clustered w.r.t. the previous experiment.

The outcomes reported in Table 4 show that, in absolute terms, more axioms
were generally discovered by our method (considering all three choices for ν)
compared with the two other methods. Moreover, the number of inconsistencies
introduced (in case of direct addition to the knowledge bases) was quite limited in
proportion to the number of axioms produced: for example, with Monetary and
Vicodi less than the 3.5% in almost 20000 discovered axioms. This is interesting
in the perspective of an integration in an ontology enrichment process: a larger
variety of possibly redundant axioms may be proposed for validation with a
very limited chance of introducing errors. On the other hand, the table shows
that the compared approaches exhibited a more stable behavior with respect to
the fractions of removed axioms f because they could discover axioms involving
exclusively named concepts of the knowledge base signature whose instances are
more likely to be available. Moreover, a weak correlation between two concepts
is unlikely to depend on the presence of a disjointness axiom involving them.
This led them also not to introduce further inconsistencies in the experiments.
Inspecting sampled TCTs to gain a deeper insight into the outcomes, we could
note that, for ontologies with a smaller number of concepts, such as BioPax and
NTN, the refinement operator tended to introduce the same concept in more
branches. As a consequence, a large number of axioms were discovered due to
the replication of some sub-trees.

We also noted that TCTs for ontologies like DBPedia, VICODI and MON-

ETARY presented concept descriptions installed at inner nodes that could
be generally considered as disjoint but for few cases represented by specific
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Table 4. Experimental comparison of the various approaches: average numbers of cases
of inconsistency (#inc.) and total numbers of discovered axioms (#ax’s)

Ontology f TCT 0.9 TCT 0.8 TCT 0.7 PCC NAR

#inc #ax’s #inc #ax’s #inc #ax’s #inc #ax’s #inc #ax’s

BioPax 20% 235 3859 357 4235 365 4256 257 280 352 2990

50% 125 3576 357 4176 432 4115

70% 125 3432 235 3875 417 4154

NTN 20% 312 3128 343 3126 354 3124 32 957 376 3766

50% 234 3023 234 3034 235 3034

70% 156 2987 176 2679 123 2675

Financial 20% 76 165 87 325 96 276 124 1112 542 5366

50% 37 143 56 307 53 259

70% 33 143 43 276 40 221

GeoSkills 20% 234 14289 357 14297 432 14345 456 13384 456 13299

50% 231 14123 356 14154 417 14256

70% 234 14122 358 14154 377 14187

Monetary 20% 535 13456 573 13453 623 13460 543 13384 423 13456

50% 315 13236 432 13236 532 13236

70% 247 13127 231 13127 312 13127

Mutagenesis 20% 34 14753 43 14847 43 14978 20 2264 45 14832

50% 23 14753 31 14753 32 14978

70% 23 14753 32 14753 32 14978

Vicodi 20% 431 18231 485 18432 502 18432 475 15518 472 18721

50% 142 18231 345 18432 467 18431

70% 141 18231 345 18432 312 18432

DBPedia3.9 20% 1345 29730 1432 30143 1432 30567 1243 30470 1243 30365

50% 1346 29730 1431 30143 1433 30567

70% 1343 19730 1432 30143 1432 30567

individuals. For example, this situation applied to the concepts Actor and Presi-
dent in DBPedia, sharing the instance RONALD REAGAN. The resulting axioms
cannot be considered as wrong; they are intended to be submitted to the vali-
dation of a domain expert.

Considering the performance in terms of rate of rediscovered axioms (a sort
of recall index), Table 5 shows very high rates of recovery using the TCT-based
method. Even more so, it allows to express more general disjointness axioms
than those obtained through the other algorithms: these tackle only the dis-
jointness between concept names whereas from the TCTs axioms involving arbi-
trarily complex concept descriptions can be derived as a product of the refine-
ment operator adopted in learning procedure. This explains why, in most cases,
the number of discovered axioms, but also the number of inconsistencies, was
larger with respect to those observed with the compared methods. As reported
in Table 5, on average an amount of axioms could not be rediscovered by the
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Table 5. Average rates (and standard deviations) of removed axioms re-discovered
using the various approaches (with standard and pre-pruned TCTs)

Ontology f TCT – standard mode TCT – early stopping

TCT 0.9 TCT 0.8 TCT 0.7 TCT 0.9 TCT 0.8 TCT 0.7

BioPax 20% 0.90± 0.12 0.76± 0.13 0.74± 0.13 0.80± 0.23 0.65± 0.23 0.70± 0.13

50% 0.85± 0.13 0.74± 0.13 0.74± 0.13 0.63± 0.23 0.63± 0.23 0.63± 0.23

70% 0.85± 0.13 0.74± 0.12 0.74± 0.14 0.69± 0.13 0.67± 0.13 0.66± 0.14

NTN 20% 0.99± 0.08 0.95± 0.06 0.95± 0.08 0.70± 0.15 0.67± 0.15 0.67± 0.14

50% 0.97± 0.03 0.93± 0.10 0.93± 0.01 0.55± 0.13 0.54± 0.13 0.54± 0.15

70% 0.90± 0.10 0.89± 0.11 0.89± 0.10 0.55± 0.13 0.55± 0.13 0.55± 0.13

Financial 20% 0.99± 0.08 0.99± 0.08 0.99± 0.08 0.60± 0.10 0.59± 0.11 0.59± 0.11

50% 0.97± 0.03 0.97± 0.03 0.97± 0.03 0.56± 0.10 0.56± 0.10 0.56± 0.10

70% 0.95± 0.05 0.95± 0.05 0.95± 0.05 0.56± 0.10 0.56± 0.10 0.56± 0.10

GeoSkills 20% 0.99± 0.08 0.99± 0.08 0.99± 0.08 0.70± 0.15 0.69± 0.11 0.69± 0.11

50% 0.92± 0.10 1.00± 0.00 1.00± 0.00 0.65± 0.23 0.65± 0.23 0.65± 0.23

70% 0.92± 0.10 0.92± 0.10 0.92± 0.10 0.65± 0.23 0.63± 0.22 0.62± 0.23

Monetary 20% 0.99± 0.08 1.00± 0.00 1.00± 0.00 0.65± 0.23 0.63± 0.20 0.62± 0.23

50% 0.94± 0.13 1.00± 0.00 1.00± 0.00 0.63± 0.12 0.66± 0.15 0.65± 0.11

70% 0.94± 0.13 0.91± 0.14 0.91± 0.13 0.62± 0.12 0.60± 0.13 0.60± 0.12

Mutagenesis 20% 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.56± 0.13 0.53± 0.14 0.51± 0.12

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.52± 0.14 0.51± 0.15 0.50± 0.11

70% 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.50± 0.15 0.50± 0.16 0.50± 0.15

Vicodi 20% 0.95± 0.02 0.90± 0.08 0.90± 0.08 0.65± 0.03 0.63± 0.01 0.62± 0.01

50% 0.95± 0.02 0.90± 0.08 0.90± 0.08 0.62± 0.03 0.62± 0.04 0.62± 0.03

70% 0.95± 0.02 0.90± 0.08 0.90± 0.08 0.58± 0.04 0.57± 0.05 0.58± 0.04

DBPedia3.9 20% 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.70± 0.12 0.68± 0.13 0.67± 0.12

50% 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.65± 0.23 0.68± 0.13 0.64± 0.12

70% 0.96± 0.08 0.90± 0.08 0.90± 0.08 0.65± 0.22 0.68± 0.13 0.64± 0.12

new method. The TCT-based approach assumes the availability of the instances
belonging the concepts involved in a target axiom. But in the evaluation, espe-
cially with Financial and Vicodi, some concepts were endowed with a very
small number of instances (less than 10). As a result, the proposed approach
could not detect cases of disjointness due to the lack of good cluster medoids.
For example, in the experiments with Financial, our method was unable to
discover the disjointness of the concepts Loan and Sex. For this ontology, Sex
was used to model the customer’s gender but no specific assertion was available:
the gender was instead designed as a subconcept (Male/Female). A similar case
was observed also in the experiments on Vicodi: the disjointness of Actor and
Artefact could not be discovered.

Regarding the ability of discovering axioms also preventing the cases of incon-
sistency due to the process, one may argue that growing taller trees, thus involv-
ing very specific concept descriptions like those produced in these experiments,
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may turn out to be time-consuming and error-prone. To test this aspect, we
checked the quality of the axioms obtained by prematurely stopping the growth
of TCTs at a certain level instead of reaching the leaves namely, it was stopped
if the induced axioms would introduce a case of inconsistency. Hence, Table 5
reports also the results of the experiments run with this policy implemented in
the method (early stopping columns). As expected, the proportions of detected
axioms were lower than those obtained using the standard method: no more
than 80% of the removed axioms were rediscovered. This means that, although
the progressive specialization of the concepts included in the disjointness axioms
may lead to cases of inconsistency, working in standard mode the method can
help elicit relevant correct axioms (inconsistencies may be avoided applying a
post-pruning strategy aimed at preventing the production of defective axioms).
Besides, we noted that the aforementioned exploration procedure was often
stopped too early: in most cases, the consistency of the knowledge base was
preserved by adding axioms that can be found within the 10th and the 15th level
in the TCTs. One of the benefits deriving from the proposed approach concerns
the ability to overcome one of the downsides of association rules: they cannot
be considered as logical rules, rather they merely denote statistical correlations
between two or more features (that hold with a degree of uncertainty).

Finally, our new method showed it could be more efficient than the one based
on Apriori, that was especially slow in the step of generating the frequent
patterns. The running-time for inducing TCTs spanned from less than a minute
to hours for the various ontologies, while the time required by the association rule
mining was larger in most cases. Note that this also depends on the maximum
length of the rules: mining longer rules (to discover more axioms) would make
the method infeasible.

6 Conclusions and Outlook

In this work, we have illustrated the terminological cluster trees, an extension of
terminological decision trees [8] that, unlike these supervised classification mod-
els, aims at solving an unsupervised problem: clustering individual resources
occurring in Web ontologies. As an application, we have cast the task of dis-
covering disjointness axioms as the mentioned clustering problem and have pro-
posed a solution that exploits the new models. In the presented empirical evalua-
tion the effectiveness of the proposed approach was tested. Compared to related
unsupervised approaches, the new method proved to be able to discover dis-
jointness axioms involving complex concept descriptions exploiting the ontology
as a source of background knowledge, unlike the other methods based on the
statistical correlation between instances.

This work can be extended along various directions. One regards the inves-
tigation of other distances measures for individuals and different notions of
separation between clusters. In addition, this approach can be integrated with
other machine learning-based frameworks for ontology engineering, such as DL-

learner [14], as a service for enriching the terminology of lightweight ontologies.
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The method can be further improved by introducing a post-pruning step for bet-
ter tackling the problem of empty-clusters. Finally, the empirical evaluation may
be extended considering further methods and well-modeled ontologies endowed
with disjointness axioms which seem hard to find.
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