Skip to main content

Metal Oxide Semiconductor Thin-Film Transistors: Device Physics and Compact Modeling

  • Chapter
  • First Online:
Outlook and Challenges of Nano Devices, Sensors, and MEMS
  • 2463 Accesses

Abstract

Metal oxide semiconductor thin-film transistors (TFTs) have been recognized as the most promising technology in the field of flexible electronics and flat-panel displays because of their high mobility, low-temperature fabrication process, and spatial uniformity of device characteristics. In this chapter, we review the development and operating principles of the metal oxide semiconductor TFTs, as well as the compact-modeling framework. For both the non-degenerate and degenerate conductions, the core compact models, including the analysis of surface potential and drain current, are discussed and compared. To enhance the computational efficiency of the calculations, an explicit and closed-form scheme for the surface potential solution is developed by including both exponential deep and tail states. The resulting DC and surface potential models give accurate descriptions with single-piece formulas, which are suitable for CAD applications. The numerical simulation and experimental results are also included in order to assess the validity of the models introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.J. Wu, L. Zhou, R.H. Yao, J.B. Peng, A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays. IEEE Electron Device Lett. 32(7), 931–933 (2011)

    Article  Google Scholar 

  2. R.E. Presley, D. Hong, H.Q. Chiang, C.M. Hung, R.L. Hoffman, J.F. Wager, Transparent ring oscillator based on indium gallium oxide thin-film transistor. Solid State Electron. 50(3), 500–503 (2006)

    Article  Google Scholar 

  3. D. Raiteri, F. Torricelli, K. Myny, et al., A 6b 10MS/s current-steering DAC manufactured with amorphous Gallium-Indium-Zinc-Oxide TFTs achieving SFDR>30 dB up to 300kHz. Int. Solid State Circuits Conf., 314–316 (2012)

    Google Scholar 

  4. H. Ozaki, T. Kawamura, H. Wakana, T. Yamazoe, H. Uchiyama, Wireless operations for 13.56-MHz band RFID tag using amorphous oxide TFTs. IEICE Electron. Express 8(4), 225–231 (2011)

    Article  Google Scholar 

  5. A. Nathan, A. Ahnood, M.T. Cole, et al., Flexible electronics: the next ubiquitous platform. Proc. IEEE 100, 1486–1517 (2012)

    Article  Google Scholar 

  6. D. Makarov, M. Melzer, D. Karnaushenko, O.G. Schmidt, Shapeable magnetoelectronics. Appl. Phys. Rev. 3(1), 011101 (2016)

    Article  Google Scholar 

  7. S. Wagner, S.P. Lacour, J. Jones, et al., Electronic skin: architecture and components. Physica E Low Dimens. Syst. Nanostruct. 25(2–3), 326–334 (2004)

    Article  Google Scholar 

  8. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, et al., Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  Google Scholar 

  9. V.J. Lumelsky, M.S. Shur, S. Wagner, Sensitive skin. IEEE Sens. J. 1(1), 41–51 (2001)

    Article  Google Scholar 

  10. M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z. Bao, 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6037 (2013)

    Article  Google Scholar 

  11. D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)

    Article  Google Scholar 

  12. S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, et al., A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)

    Article  Google Scholar 

  13. J. Genoe, K. Obata, M. Ameys, K. Myny, T.H. Ke, et al., Integrated line driver for digital pulse-width modulation driven AMOLED displays on flex. IEEE J. Solid State Circuits 50(1), 282–290 (2015)

    Article  Google Scholar 

  14. L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, et al., Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 3(2), 021303 (2016)

    Article  Google Scholar 

  15. H.A. Klasens, H. Koelmans, A tin oxide field-effect transistor. Solid State Electron. 7(9), 701–702 (1964)

    Article  Google Scholar 

  16. M.W.J. Prins, K.O. Grosse-Holz, G. Müller, J.F.M. Cillessen, et al., A ferroelectric transparent thin-film transistor. Appl. Phys. Lett. 68(25), 3650–3652 (1996)

    Article  Google Scholar 

  17. C.H. Seager, D.C. McIntyre, W.L. Warren, B.A. Tuttle, Charge trapping and device behavior in ferroelectric memories. Appl. Phys. Lett. 68(19), 2660–2662 (1996)

    Article  Google Scholar 

  18. R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82(5), 733–735 (2003)

    Article  Google Scholar 

  19. P.F. Carcia, R.S. McLean, M.H. Reilly, Oxide engineering of ZnO thin-film transistors for flexible electronics. J. Soc. Inf. Disp. 13(7), 547–554 (2005)

    Article  Google Scholar 

  20. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300(5623), 1269–1272 (May 2003)

    Article  Google Scholar 

  21. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86(1), 013503 (2005)

    Article  Google Scholar 

  22. N.L. Dehuff, E.S. Kettenring, D. Hong, H.Q. Chiang, J.F. Wager, et al., Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys. 97(6), 064505 (2005)

    Article  Google Scholar 

  23. Z. Xu, M. Li, M. Xu, et al., Flexible amorphous oxide thin-film transistors on polyimide substrate for AMOLED. Proc. SPIE 9270, 92700A (2014)

    Article  Google Scholar 

  24. M. Bae, Y. Kim, D. Kong, et al., Analytical models for drain current and gate capacitance in amorphous InGaZnO thin-film transistors with effective carrier density. IEEE Electron Device Lett. 32(11), 1546–1548 (2011)

    Article  Google Scholar 

  25. M. Bae, K.M. Lee, E.S. Cho, et al., Analytical current and capacitance models for amorphous Indium-Gallium-Zinc-Oxide thin-film transistors. IEEE Trans. Electron Device 60(10), 3465–3473 (2013)

    Article  Google Scholar 

  26. H.C. Pao, C.T. Sah, Effects of diffusion current on characteristics of metal-oxide (insulator) -semiconductor transistors. Solid State Electron. 9(10), 927–937 (1966)

    Article  Google Scholar 

  27. A. Tsormpatzoglou, N.A. Hastas, N. Choi, F. Mahmoudabadi, M.K. Hatalis, C.A. Dimitriadis, Analytical surface-potential-based drain current model for amorphous InGaZnO thin film transistors. J. Appl. Phys. 114(18), 184502 (2013)

    Article  Google Scholar 

  28. M. Ghittorelli, F. Torricelli, L. Colalongo, et al., Accurate analytical physical modeling of amorphous InGaZnO thin-film transistors accounting for trapped and free charges. IEEE Trans. Electron Device 61(12), 4105–4112 (2014)

    Article  Google Scholar 

  29. L. Colalongo, Compact model of amorphous InGaZnO thin film transistors based on symmetric quadrature of accumulation charge. IEEE Electron Device Lett. 37(4), 416–418 (2016)

    Article  Google Scholar 

  30. G. Gildenblat, X. Li, W. Wu, H. Wang, A. Jha, R. van Langevelde, et al., PSP: an advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans. Electron Devices 53(9), 1979–1992 (2006)

    Article  Google Scholar 

  31. J.H. Park, Y. Kim, S. Kim, et al., Surface-potential-based analytic DC I-V model with effective electron density for a-IGZO TFTs considering the parasitic resistance. IEEE Electron Device Letters 32(11), 1540–1542 (2011)

    Article  Google Scholar 

  32. W. Deng, J. Huang, X. Ma, T. Ning, An explicit surface-potential-based model for amorphous IGZO thin-film transistors including both tail and deep states. IEEE Electron Device Lett. 35(1), 78–80 (2014)

    Article  Google Scholar 

  33. M. Ghittorelli, F. Torricell, J.-L. Van Der Steen, C. Garripoli, A. Tripathi, et al., Physical-based analytical model of flexible a-IGZO TFTs accounting for both charge injection and transport. IEDM Tech. Dig., 28.2.1–28.2.4 (2015)

    Google Scholar 

  34. M. Ghittorelli, F. Torricelli, Z.M. Kovács-Vajna, Analytical physical-based drain-current model of amorphous InGaZnO TFTs accounting for both non-degenerate and degenerate conduction. IEEE Electron Device Lett. 36(12), 1340–1343 (2015)

    Article  Google Scholar 

  35. M. Ghittorelli, F. Torricelli, Z.M. Kovács-Vajna, Physical modeling of amorphous InGaZnO thin-film transistors: the role of degenerate conduction. IEEE Trans. Electron Devices 63(6), 2417–2423 (2016)

    Article  Google Scholar 

  36. J. Robertson, Disorder and instability processes in amorphous conducting oxides. Phys. Status Solidi B 245(6), 1026–1032 (2008)

    Article  Google Scholar 

  37. T. Kamiya, K. Nomura, H. Hosono, Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping. J. Disp. Technol. 5(7), 273–288 (2009)

    Article  Google Scholar 

  38. R.M. Corless, G.H. Gonnet, D.E.G. Hare, et al., On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Ortiz-Conde, F.J.G. Sanchez, M. Guzman, Exact analytical solution of channel surface potential as an explicit function of gate voltage in undoped-body MOSFETs using the Lambert W function and a threshold voltage definition therefrom. Solid State Electron. 47(11), 2067–2074 (2003)

    Article  Google Scholar 

  40. K. Abe, N. Kaji, H. Kumomi, et al., Simple analytical model of on operation of amorphous InGaZnO thin-film transistors. IEEE Trans. Electron Device 58(10), 3463–3471 (2011)

    Article  Google Scholar 

  41. S. Lee, J.-H. Park, K. Jeon, et al., Modeling and characterization of metal-semiconductor-metal-based source-drain contacts in amorphous InGaZnO thin film transistors. Appl. Phys. Lett. 96(11), 113506 (2010)

    Article  Google Scholar 

  42. J. He, M. Chan, X. Zhang, et al., A physics-based analytic solution to the MOSFET surface potential from accumulation to strong-inversion region. IEEE Trans. Electron Devices 53(9), 2008–2016 (2006)

    Article  Google Scholar 

  43. O. Marinov, M.J. Deen, U. Zschieschang, H. Klauk, Organic thin-film transistors: Part I-Compact DC modeling. IEEE Trans. Electron Devices 56(12), 2952–2961 (2009)

    Article  Google Scholar 

  44. P. Servati, D. Striakhilev, A. Nathan, Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors. IEEE Trans. Electron Devices 50(11), 2227–2235 (2003)

    Article  Google Scholar 

  45. S. Lee, K. Ghaffarzadeh, A. Nathan, et al., Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Appl. Phys. Lett. 98(20), 203508 (2011)

    Article  Google Scholar 

  46. T. Kamiya, K. Nomura, H. Hosono, Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: percolation conduction examined by analytical model. J. Disp. Technol. 5(12), 462–467 (2009)

    Article  Google Scholar 

  47. C.G. Lee, B. Cobb, A. Dodabalapur, Band transport and mobility edge in amorphous solution-processed zinc tin oxide thin-film transistors. Appl. Phys. Lett. 97(20), 203505 (2010)

    Article  Google Scholar 

  48. T. Kamiya, K. Nomura, H. Hosono, Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors. Appl. Phys. Lett. 96(12), 122103 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanling Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deng, W., Fang, J., Wei, X., Yu, F. (2017). Metal Oxide Semiconductor Thin-Film Transistors: Device Physics and Compact Modeling. In: Li, T., Liu, Z. (eds) Outlook and Challenges of Nano Devices, Sensors, and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-50824-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50824-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50822-1

  • Online ISBN: 978-3-319-50824-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics