Skip to main content

Fabrication and Physical Properties of Nanoscale Spin Devices Based on Organic Semiconductors

  • Chapter
  • First Online:
Outlook and Challenges of Nano Devices, Sensors, and MEMS
  • 2298 Accesses

Abstract

Fabrication and physical properties of organic spin devices were introduced. The shadow masks were generally used to form a cross junction in stacking structure devices because the chemical solvent for cleaning would pollute organic semiconductor layers if an etching technique was used. Interface coupling between molecular layer and ferromagnetic metal plays important roles in determining spin injection/detection efficiency of traditionally organic spin devices and constructing molecular spin memory devices. Both giant magnetoresistance and tunneling magnetoresistance effects were discussed to understand spin conserved electron transport behaviors in organic semiconductors. The configuration and composition of molecules contributes greatly to improve the performance in spin based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Dediu, M. Murgia, F.C. Matacotta, C. Taliani, S. Barbanera, Room temperature spin polarized injection in organic semiconductors. Solid State Commun. 122, 181–184 (2002)

    Article  Google Scholar 

  2. Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004)

    Article  Google Scholar 

  3. C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, A. Fert, Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 6, 615–620 (2010)

    Article  Google Scholar 

  4. S. Steil, N. Großmann, M. Laux, A. Ruffing, D. Steil, M. Wiesenmayer, S. Mathias, O.L.A. Monti, M. Cinchetti, M. Aeschlimann, Spin-dependent trapping of electrons at spinterfaces. Nat. Phys. 9, 242–247 (2013)

    Article  Google Scholar 

  5. K.V. Raman, A.M. Kamerbeek, A. Mukherjee, N. Atodiresei, T.K. Sen, P. Lazic, V. Caciuc, R. Michel, D. Stalke, S.K. Mandal, S. Blugel, M. Munzenberg, J.S. Moodera, Interface-engineered templates for molecular spin memory devices. Nature 493, 509–513 (2013)

    Article  Google Scholar 

  6. S.W. Jiang, S. Liu, P. Wang, Z.Z. Luan, X.D. Tao, H.F. Ding, D. Wu, Exchange-dominated pure spin current transport in Alq3 molecules. Phys. Rev. Lett. 115, 086601 (2015)

    Article  Google Scholar 

  7. A.K. Singh, J. Eom, Negative magnetoresistance in a vertical single-layer graphene spin valve at room temperature. ACS Appl. Mater. Interfaces 6, 2493–2496 (2014)

    Article  Google Scholar 

  8. F. Li, Effect of substrate temperature on the spin transport properties in C60-based spin valves. ACS Appl. Mater. Interfaces 5, 8099–8104 (2013)

    Article  Google Scholar 

  9. D.L. Sun, E. Ehrenfreund, Z.V. Vardeny, The first decade of organic spintronics research. Chem. Commun. 50, 1781–1793 (2014)

    Article  Google Scholar 

  10. S. Shi, Z. Sun, A. Bedoya-Pinto, P. Graziosi, X. Li, X. Liu, M. Fahlman, Hybrid interface states and spin polarization at ferromagnetic metal–organic heterojunctions: interface engineering for efficient spin injection in organic spintronics. Adv. Funct. Mater. 24, 4812–4821 (2014)

    Article  Google Scholar 

  11. T.D. Nguyen, G. Hukic-Markosian, F.J. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, Z.V. Vardeny, Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 9, 345–352 (2010)

    Article  Google Scholar 

  12. X.M. Zhang, S. Mizukami, Q.L. Ma, T. Kubota, M. Oogane, H. Naganuma, Y. Ando, T. Miyazaki, Spin-dependent transport behavior in C60 and Alq3 based spin valves with a magnetite electrode. J. Appl. Phys. 115, 172608 (2014)

    Article  Google Scholar 

  13. V. Dediu, L.E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M.P. De Jong, C. Taliani, Y. Zhan, Room-temperature spintronic effects in Alq3-based hybrid devices. Phys. Rev. B 78, 115203 (2008)

    Article  Google Scholar 

  14. V. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Spin routes in organic semiconductors. Nat. Mater. 8, 707–716 (2009)

    Article  Google Scholar 

  15. Y.H. Zheng, F. Wudl, Organic spin transporting materials: present and future. J. Mater. Chem. A 2, 48–57 (2014)

    Article  Google Scholar 

  16. J. Devkota, R. Geng, R. Subedi, T. Nguyen, Organic Spin Valves: A Review (Adv. Funct, Mater, 2016). doi:10.1002/adfm.201504209

    Google Scholar 

  17. T.D. Nguyen, E. Ehrenfreund, Z.V. Vardeny, Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 337, 204–209 (2012)

    Article  Google Scholar 

  18. F. Al Ma’Mari, T. Moorsom, G. Teobaldi, W. Deacon, T. Prokscha, H. Luetkens, S. Lee, G.E. Sterbinsky, D.A. Arena, et al., Beating the Stoner criterion using molecular interfaces. Nature 524, 69–73 (2015)

    Article  Google Scholar 

  19. C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, A. Fert, Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 6, 615 (2010)

    Article  Google Scholar 

  20. S. Majumdar, R. Laiho, P. Laukkanen, I.J. Vayrynen, H.S. Majumdar, R. Osterbacka, Application of regioregular polythiophene in spintronic devices: effect of interface. Appl. Phys. Lett. 89, 122114 (2006)

    Article  Google Scholar 

  21. D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X.G. Zhang, T.Z. Ward, Z. Cheng, J. Shen, Giant magnetoresistance in organic spin valves. Phys. Rev. Lett. 104, 236602 (2010)

    Article  Google Scholar 

  22. J.H. Shim, K.V. Raman, Y.J. Park, T.S. Santos, G.X. Miao, B. Satpati, J.S. Moodera, Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 100, 22603 (2008)

    Google Scholar 

  23. T.S. Santos, J.S. Lee, P. Migdal, I.C. Lekshmi, B. Satpati, J.S. Moodera, Room-temperature tunnel magnetoresistance and spin-polarized tunneling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007)

    Article  Google Scholar 

  24. W.H. Xu, J. Brauer, G. Szulczewski, M.S. Driver, A.N. Caruso, Electronic, magnetic, and physical structure of cobalt deposited on aluminum tris (8-hydroxy quinoline). Appl. Phys. Lett. 94, 233302 (2009)

    Article  Google Scholar 

  25. Y.Q. Zhan, E. Holmstroöm, R. Liza´rraga, O. Eriksson, X.J. Liu, F.H. Li, E. Carlegrim, S. Stafstroöm, M. Fahlman, Efficient spin injection through exchange coupling at organic semiconductor/ferromagnet heterojunctions. Adv. Mater. 22, 1626 (2010)

    Google Scholar 

  26. T.L.A. Tran, P.K.J. Wong, M.P. de Jong, W.G. van der Wiel, Y.Q. Zhan, M. Fahlman, Hybridization-induced oscillatory magnetic polarization of C(60) orbitals at the C(60)/Fe(001) interface. Appl. Phys. Lett. 98, 222505 (2011)

    Article  Google Scholar 

  27. D. Çakır, D.M. Otalvaro, G. Brocks, Magnetoresistance in multilayer fullerene spin valves: a first-principles study. Phys. Rev. B 90, 245404 (2014)

    Article  Google Scholar 

  28. P.K. Johnny Wong, W. Zhang, G. Laan, M.P. de Jong, Hybridizationinduced charge rebalancing at the weakly interactive C60/Fe3O4(001) spinterface. Org. Electron. 29, 39–43 (2016)

    Article  Google Scholar 

  29. A.J. Drew et al., Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nat. Mater. 8, 109–114 (2009)

    Article  Google Scholar 

  30. M. Cinchetti et al., Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nat. Mater. 8, 115–119 (2009)

    Article  Google Scholar 

  31. PRL. 81, 5229 (1998)

    Google Scholar 

  32. S.P. Park, S.S. Kim, J.H. Kim, C.N. Whang, S. Im, Optical and luminescence characteristics of thermally evaporated pentacene films on Si. Appl. Phys. Lett. 80, 2872 (2002)

    Article  Google Scholar 

  33. T. Kambayashi, H. Ohta, H. Hoshi, M. Hirano, H. Hosono, H. Takezoe, K. Ishikawa, Organic semiconductors for device applications: current trends and future prospects. Cryst. Growth Des. 5, 143 (2005)

    Article  Google Scholar 

  34. J.P. Velev, P.A. Dowben, E.Y. Tsymbal, S.J. Jenkins, A.N. Caruso, Interface effects in spin-polarized metal/insulator layered structures. Surf. Sci. Rep. 63, 400 (2008)

    Article  Google Scholar 

  35. Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, C.-Y. Chiu, Y.-L. Lai, H.-T. Chang, C.-H. Lee, Y.J. Hsu, D.H. Wei, Magnetic response of an ultrathin cobalt film in contact with an organic pentacene layer. Phys. Rev. Lett. 104, 177204 (2010)

    Article  Google Scholar 

  36. D.H. Wei, Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, Y.-L. Lai, H.-T. Chang, C.-H. Lee, Y.J. Hsu, Magnetic disparities at the interfaces of Co–pentacene–Co hybrid structures. Synth. Met. 161, 581–585 (2011)

    Article  Google Scholar 

  37. N. Atodiresei, J. Brede, P. Lazic, V. Caciuc, G. Hoffmann, R. Wiesendanger, S. Blugel, Design of the local spin polarization at the organic-ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010)

    Article  Google Scholar 

  38. A.A. Sidorenko, C. Pernechele, P. Lupo, M. Ghidini, M. Solzi, R. De Renzi, I. Bergenti, P. Graziosi, V. Dediu, L. Hueso, A.T. Hindmarch, Interface effects on an ultrathin Co film in multilayers based on the organic semiconductor Alq3. Appl. Phys. Lett. 97, 162509 (2010)

    Article  Google Scholar 

  39. A.N. Caruso, D.L. Schulz, P.A. Dowben, Metal hybridization and electronic structure of tris (8-hydroxyquinolato) aluminum (Alq3). Chem. Phys. Lett. 413, 321 (2005)

    Article  Google Scholar 

  40. J.M. Baik, Y. Shon, S.J. Lee, Y.H. Jeong, T.W. Kang, J.-L. Lee, Electronic structure and magnetism in transition metals doped 8-hydroxy-quinoline aluminum. J. Am. Chem. Soc. 130, 13522 (2008)

    Article  Google Scholar 

  41. Y. Matsumoto, S. Sakai, Y. Takagi, T. Nakagawa, T. Yokoyama, T. Shimada, S. Mitani, H. Naramoto, Y. Maeda, X-ray absorption spectroscopy and magnetic circular dichroism in codeposited C60–Co films with giant tunnel magnetoresistance. Chem. Phys. Lett. 470, 244 (2009)

    Article  Google Scholar 

  42. M. Cummings, S. Gliga, B. Lukanov, E.I. Altman, M. Bode, E.V. Barrera, Surface interactions of molecular C60 and impact on Ni(100) and Co(0001) film growth: a scanning tunneling microscopy study. Surf. Sci. 605, 72 (2011)

    Article  Google Scholar 

  43. K.V. Raman, J.S. Moodera, Materials chemistry: a magnetic facelift for non-magnetic metals. Nature 524, 42–43 (2015)

    Article  Google Scholar 

  44. J.J.H.M. Schoonus, P.G.E. Lumens, W. Wagemans, J.T. Kohlhepp, P.A. Bobbert, H.J.M. Swagten, B. Koopmans, Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling. Phys. Rev. Lett. 103, 146601 (2009)

    Article  Google Scholar 

  45. H.-J. Jang, K.P. Pernstich, D.J. Gundlach, O.D. Jurchescu, C.A. Richter, Observation of spin-polarized electron transport in Alq3 by using a low work function metal. Appl. Phys. Lett. 101, 102412 (2012)

    Article  Google Scholar 

  46. L. Schulz, L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V.K. Malik, C. Bernhard, F.L. Pratt, N.A. Morley, A. Suter, G.J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W.P. Gillin, A.J. Drew, Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 10, 39 (2011)

    Article  Google Scholar 

  47. F.C. Wang, Z.H. Xiong, D. Wu, J. Shi, Z.V. Vardeny, Organic spintronics: the case of Fe/Alq3/Co spin-valve devices. Synth. Met. 155, 172 (2005)

    Article  Google Scholar 

  48. Y.H. Liu, S.M. Watson, T. Lee, J.M. Gorham, H.E. Katz, J.A. Borchers, H.D. Fairbrother, D.H. Reich, Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures. Phys. Rev. B 79, 075312 (2009a)

    Article  Google Scholar 

  49. F.J. Wang, C.G. Yang, Z. Valy Vardeny, X.G. Li, Spin response in organic spin valves based on La2/3 Sr1/3 MnO3 electrodes. Phys. Rev. B 75, 245324 (2007)

    Article  Google Scholar 

  50. Y.H. Liu, T. Lee, H.E. Katz, D.H. Reich, Effects of carrier mobility and morphology in organic semiconductor spin valves. J. Appl. Phys. 105, 07C708 (2009)

    Google Scholar 

  51. A. Yanase, K. Siratori, Band structure in the high temperature phase of Fe3O4. J. Phys. Soc. Jpn. 53, 312 (1984)

    Article  Google Scholar 

  52. Z. Zhang, S. Satpathy, Electron states, magnetism, and the Verwey transition in magnetite. Phys. Rev. B 44, 13319 (1991)

    Article  Google Scholar 

  53. Y.S. Dedkov, U. Rüdiger, G. Güntherodt, Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys. Rev. B 65, 064417 (2002)

    Article  Google Scholar 

  54. P.A. Bobbert, W. Wagemans, F.W.A. van Oost, B. Koopmans, M. Wohlgenannt, Theory for spin diffusion in disordered organic semiconductors. Phys. Rev. Lett. 102, 156604 (2009)

    Article  Google Scholar 

  55. T.D.G. Nguyen et al., Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 9, 345–352 (2010)

    Article  Google Scholar 

  56. J.J. Kwiatkowski, J.M. Frost, J. Nelson, The effect of morphology on electron field-effect mobility in disordered C60 thin films. Nano Lett. 9, 1085–1090 (2009)

    Article  Google Scholar 

  57. C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003)

    Article  Google Scholar 

  58. A. Pivrikas, M. Ullah, H. Sitter, N.S. Sariciftci, Electric field dependent activation energy of electron transport in fullerene diodes and field effect transistors: Gill’s law. Appl. Phys. Lett. 98, 092114 (2011)

    Article  Google Scholar 

  59. Z.G. Yu, Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids. Phys. Rev. Lett. 106, 106602 (2011)

    Article  Google Scholar 

  60. C.-C. Chu et al., Self-assembly of supramolecular fullerene ribbons via hydrogen-bonding interactions and their impact on fullerene electronic interactions and charge carrier mobility. J. Am. Chem. Soc. 132(36), 12717–12723 (2010)

    Article  Google Scholar 

  61. Q.-M. Zhang, J.-Y. Yi, J. Bernholc, Structure and dynamics of solid C60. Phys. Rev. Lett. 66, 2633–2636 (1991)

    Article  Google Scholar 

  62. K. Harigaya, S. Abe, Optical-absorption spectra in fullerenes C60 and C70: effects of coulomb interactions, lattice fluctuations, and anisotropy. Phys. Rev. B 49, 16746–16752 (1994)

    Article  Google Scholar 

  63. L. Schulz et al., Importance of intramolecular electron spin relaxation in small molecule semiconductors. Phys. Rev. B 84, 085209 (2011)

    Article  Google Scholar 

  64. R. Fiederling et al., Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999)

    Article  Google Scholar 

  65. Z.G. Yu, Spin-orbit coupling and its effects in organic solids. Phys. Rev. B 85, 115201 (2012)

    Article  Google Scholar 

  66. R. Lin, F. Wang, J. Rybicki, M. Wohlgenannt, K.A. Hutchinson, Distinguishing between tunneling and injection regimes of ferromagnet/organic semiconductor/ferromagnet junctions. Phys. Rev. B 81, 195214 (2010)

    Article  Google Scholar 

  67. N.J. Harmon, M.E. Flatté, Distinguishing spin relaxation mechanisms in organic semiconductors. Phys. Rev. Lett. 110, 176602 (2013)

    Article  Google Scholar 

  68. Z.G. Yu, Impurity-band transport in organic spin valves. Nat. Commun. 5, 4842 (2014)

    Article  Google Scholar 

  69. T. Lan Anh Tran, T. Quyen Le, J.G.M. Sanderink, W.G. van der Wiel, M.P. De Jong, The multistep tunneling analogue of conductivity mismatching organic spin valves. Adv. Funct. Mater. 22, 1180–1189 (2012)

    Article  Google Scholar 

  70. G. Szulczewski, H. Tokuc, K. Oguz, J.M.D. Coey, Magnetoresistance in magnetic tunnel junctions with an organic barrier and a MgO spin filter. Appl. Phys. Lett. 95, 202506 (2009)

    Article  Google Scholar 

  71. M. Gobbi, F. Golmar, R. Llopis, F. Casanova, L.E. Hueso, Room-temperature spin transport in C60-based spin valves. Adv. Mater. 23, 1609–1613 (2011)

    Article  Google Scholar 

  72. J.-W. Yoo, C.-Y. Chen, H.W. Jang, C.W. Bark, V.N. Prigodin, C.B. Eom, A.J. Epstein, Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 9, 638–642 (2010)

    Article  Google Scholar 

  73. J.-W. Yoo, H.W. Jang, V.N. Prigodin, C. Kao, C.B. Eom, A.J. Epstein, Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions. Phys. Rev. B 80, 205207 (2009)

    Article  Google Scholar 

  74. B. Li, C.Y. Kao, Y. Lu, J.-W. Yoo, V.N. Prigodin, A.J. Epstein, Room-temperature organic-based spin polarizer. Appl. Phys. Lett. 99, 153503 (2011)

    Article  Google Scholar 

  75. B. Li, C.Y. Kao, J.-W. Yoo, V.N. Prigodin, A.J. Epstein, Magnetoresistance in an all-organic-based spin valve. Adv. Mater. 23, 3382–3386 (2011)

    Article  Google Scholar 

  76. T. Vehoff, B. Baumeier, A. Troisi, D. Andrienko, Charge transport in organic crystals: role of disorder and topological connectivity. J. Am. Chem. Soc. 132, 11702–11708 (2010)

    Article  Google Scholar 

  77. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  78. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  79. H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  Google Scholar 

  80. S. Okubo, T. Okazaki, K. Hirose-Takai, K. Suenaga, S. Okada, S. Bandow, S. Iijima, Electronic structures of single-walled carbon nanotubes encapsulating ellipsoidal C70. J. Am. Chem. Soc. 132, 15252–15258 (2010)

    Article  Google Scholar 

  81. K. Tsukagoshi, B.W. Alphenaar, H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999)

    Article  Google Scholar 

  82. L.E. Hueso et al., Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007)

    Article  Google Scholar 

  83. Y.-H. Zhou, J. Zeng, K.-Q. Chen, Spin filtering effect and magnetoresistance in zigzag 6, 6, 12-graphyne nanoribbon system. Carbon 76, 175–182 (2014)

    Article  Google Scholar 

  84. P.K. Johnny Wong, W. Zhang, G. Laan, M.P. de Jong, Hybridization-induced charge rebalancing at the weakly interactive C60/Fe3O4(001) spinterface. Org. Electron. 29, 39–43 (2016)

    Article  Google Scholar 

  85. T.D. Nguyen, F.J. Wang, X.-G. Li, E. Ehrenfreund, Z.V. Vardeny, Spin diffusion in fullerene-based devices: morphology effect. Phys. Rev. B 87, 075205 (2013)

    Article  Google Scholar 

  86. Y.J. Guo, N. Karasawa, W.A. Goddard III, Prediction of fullerene packing in C60 and C70 crystals. Nature 351, 464–467 (1991)

    Article  Google Scholar 

  87. D.R. McKenzie, C.A. Davis, D.J.H. Cockayne, D.A. Muller, A.M. Vassallo, The structure of C70 molecule. Nature 355, 622–624 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, X. (2017). Fabrication and Physical Properties of Nanoscale Spin Devices Based on Organic Semiconductors. In: Li, T., Liu, Z. (eds) Outlook and Challenges of Nano Devices, Sensors, and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-50824-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50824-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50822-1

  • Online ISBN: 978-3-319-50824-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics