Skip to main content

Modelling and Optimization of Inertial Sensor-Accelerometer

  • Chapter
  • First Online:
Outlook and Challenges of Nano Devices, Sensors, and MEMS

Abstract

This book chapter presents the modelling and optimization details of a Micromachined (MEMS) dual-axis accelerometer. After providing detailed review of existing and proposed applications of these inertial sensors, the chapter introduces various present-day accelerometers available in the literature. The major challenges faced by the accelerometer sensors designs are minimization of the device foot print, noise floor, and cross-axis sensitivity. As dual axis accelerometers are designed to work in both x- and y- (in-plane) directions, they became prone to cross-coupling between the in-plane and the out of the plane (Z-axis) direction. This is due to the structural design that makes them sensitive to other cross-axis acceleration. In most of the design mode-cross-coupling occurs with Z-direction. Moreover, low stiffness in Z-axis causes the proof-mass to sag due to gravity. The present design is modelled according to the Inertial Measurement Unit (IMU) platform of GlobalFoundries. The designed accelerometer consist of a square proof mass suspended using crab leg springs. Primary focus is given to have high differential capacitance sensitivity in small foot print of 1.5 × 1.5 mm. Also, to reduce cross-axis sensitivity and to reduce mode coupling between in-plane modes and Z-axis mode. Simulation results show that the differential capacitive sensitivity of 59 fF/g. The device achieves a mode separation of 10 kHz between the in-plane and out-of-the plane modes. The average cross-axis sensitivity in XY is 1.33% and cross-axis sensitivity due to Z-axis acceleration is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Frosio, F. Pedersini, N.A. Borghese, Autocalibration of MEMS Accelerometers. IEEE Trans. Instrum. Meas. 58(6), 2034–2041 (2009)

    Article  Google Scholar 

  2. M. Ferraresi, S. Pozzi, in Advanced Microsystems for Automotive Applications. MEMS Sensors for Non-Safety Automotive (Springer, Berlin Heidelberg, 2009), pp. 355–367

    Google Scholar 

  3. S. Luczak, W. Oleksiuk, M. Bodnicki, Sensing tilt with MEMS accelerometers. IEEE Sensors J. 6(6), 1669–1675 (2006)

    Article  Google Scholar 

  4. R. Perez, Ú. Costa, M. Torrent, J. Solana, E. Opisso, C. Caceres, J.M. Tormos, J. Medina, E.J. Gómez, Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors 10(12), 10733–10751 (2010)

    Article  Google Scholar 

  5. J. Söderkvist, Micromachined gyroscopes. Sens. Actuators, A 43(1–3), 65–71 (1994)

    Article  Google Scholar 

  6. C.-W. Tan, S. Park, Design of accelerometer-based inertial navigation systems. IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005)

    Article  Google Scholar 

  7. Z.F. Syed, P. Aggarwal, C. Goodall, X. Niu, N. El-Sheimy, A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol. 18(7), 1897–1907 (2007)

    Article  Google Scholar 

  8. P. Aggarwal, Z. Syed, A. Noureldin, N. El-Sheimy, MEMS-Based Integrated Navigation (GNSS Technology and Applications) (Artech House, Norwood, Massachusetts 2010)

    Google Scholar 

  9. L.M. Roylance, J.B. Angell, A batch-fabricated silicon accelerometer. IEEE Trans. Electron Devices 26(12), 1911–1917 (1979)

    Article  Google Scholar 

  10. N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)

    Article  Google Scholar 

  11. H.V. Allen, S.C. Terry, D.W. Bruin, Accelerometer systems with self-testable features. Sens. Actuators 20(1–2), 153–161 (1989)

    Article  Google Scholar 

  12. C. Yeh, K. Najafi, A low-voltage tunneling-based silicon microaccelerometer. IEEE Trans. Electron Devices 44(11), 1875–1882 (1997)

    Article  Google Scholar 

  13. C.-H. Liu, T.W. Kenny, A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. Microelectromech. Syst. 10(3), 425–433 (2001)

    Article  Google Scholar 

  14. A.A. Seshia, M. Palaniapan, T.A. Roessing, R.T. Howe, R.W. Gooch, T.R. Schimert, S. Montague, A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784–793 (2002)

    Article  Google Scholar 

  15. J. Danel, F. Michel, G. Delapierre, Micromachining of quartz and its application to an acceleration sensor. Sens. Actuators, A 23(1–3), 971–977 (1990)

    Article  Google Scholar 

  16. E.W. Bums, R.D. Homing, W.R. Herb, J.D. Zook, H.Guckel, Resonant microibeam accelerometers. The 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, 1995

    Google Scholar 

  17. A.M. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods, Micromachined accelerometer based on convection heat transfer. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, 1998

    Google Scholar 

  18. P.-L. Chen, R.S. Muller, R.D. Jolly, G.L. Halac, R.M. White, A.P. Andrews, T.C. Lim, M.E. Motamedi, Integrated silicon microbeam PI-FET accelerometer. IEEE Trans. Electron Devices 29(1), 27–33 (1982)

    Article  Google Scholar 

  19. D.L. DeVoe, A.P. Pisano, Surface micromachined piezoelectric accelerometers (PiXLs). J. Microelectromech. Syst. 10(2), 180–186 (2001)

    Article  Google Scholar 

  20. A. Llobera, V. Seidemann, J.A. Plaza, V.J. Cadarso, S. Buttgenbach, SU-8 optical accelerometers. J. Microelectromech. Syst. 16(1), 111–121 (2007)

    Article  Google Scholar 

  21. T. Tsuchiya, H. Funabashi, A z-axis differential capacitive SOI accelerometer with vertical comb electrodes. Sens. Actuators, A 116(3), 378–383 (2004)

    Article  Google Scholar 

  22. B.E. Boser, Electronics for micromachined inertial sensors. International Conference on Solid State Sensors and Actuators, Chicago, 1997

    Google Scholar 

  23. H. Luo, G.K. Fedder, L.R. Carley, A 1 mG lateral CMOS-MEMS accelerometer. The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, 2000

    Google Scholar 

  24. J. Chae, H. Kulah, K. Najafi, A hybrid silicon-on-glass (SOG) lateral micro-accelerometer with CMOS readout circuitry. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 2002

    Google Scholar 

  25. I.Y. Park, C.W. Lee, H.S. Jang, Y.S. Oh, B.J. Ha, Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, 1998

    Google Scholar 

  26. Y. Matsumoto, M. Iwakiri, H. Tanaka, M. Ishida, T. Nakamura, A capacitive accelerometer using SDB-SOI structure. Sens. Actuators, A 53(1–3), 267–272 (1996)

    Article  Google Scholar 

  27. H. Xie, G.K. Fedder, A CMOS z-axis capacitive accelerometer with comb-finger sensing. The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, 2000

    Google Scholar 

  28. K.-Y. Park, C.-W. Leeb, H.-S. Janga, Y. Ohc, B. Hac, Capacitive type surface-micromachined silicon accelerometer with stiffness tuning capability. Sens. Actuators, A 73(1–2), 109–116 (1999)

    Article  Google Scholar 

  29. Y.-W. Hsu, J.-Y. Chen, H.-T. Chien, S. Chen, S.-T. Lin, L.-P. Liao, New capacitive low-g triaxial accelerometer with low cross-axis sensitivity. J. Micromech. Microeng. 20(5), 1–10 (2010)

    Article  Google Scholar 

  30. A. Alfaifi, F. Nabki, M.N. El-Gamal, A dual-axis bulk micromachined accelerometer with low cross-sensitivity. 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Seville, 2012

    Google Scholar 

  31. A. Baschirotto, A. Gola, E. Chiesa, E. Lasalandra, F. Pasolini, M. Tronconi, T. Ungaretti, A ±1-g dual-axis linear accelerometer in a standard 0.5-μm CMOS technology for high-sensitivity applications. IEEE J. Solid State Circuits 38(7), 1292–1297 (2003)

    Article  Google Scholar 

  32. Z. Mohammed, G. Dushaq, A. Chatterjee, M. Rasras, Bi-axial highly sensitive ±5 g polysilicon based differential capacitive accelerometer. 17th IEEE International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Montpellier, France, 2016

    Google Scholar 

  33. C.-M. Sun, M.-H. Tsai, Y.-C. Liu, W. Fang, Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique. IEEE Trans. Electron Devices 57(7), 1670–1679 (2010)

    Article  Google Scholar 

  34. J. M. Darmanin, I. Grech, J. Micallef, E. Gatt, O. Casha, A. Briffa, Design consideration for three-axis MEMS accelerometers using an asymmetric proof mass. IEEE EUROCON, Zagreb, 2013

    Google Scholar 

  35. Z. Mohammed, O.T. Waheed, I. Elfadel, A. Chatterjee, M. Rasras, Design, analysis and system level modelling of single axis MEMS capacitive accelerometer. ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, 2016

    Google Scholar 

  36. Z. Mohammed, M. Rasras, Optimization of finger spacing and spring constant in comb type capacitive accelerometer. 7th IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 2016

    Google Scholar 

  37. Y. Terzioglu, S.E. Alper, K. Azgin, T. Akin, A capacitive MEMS accelerometer readout with concurrent detection and feedback using discrete components. IEEE/ION Position, Location and Navigation Symposium–PLANS 2014, Monterey, CA, 2014

    Google Scholar 

Download references

Acknowledgement

This work was funded by Mubadala Development Company–Abu Dhabi, Economic Development Board–Singapore and GLOBALFOUNDRIES–Singapore under the framework of ‘Twinlab’ project with participation of A*STAR Institute of Microelectronics–Singapore (IME), Masdar Institute of Science and Technology–Abu Dhabi and GLOBALFOUNDRIES–Singapore. Further, we would like to acknowledge Mr. Aveek Chatterjee of GlobalFoundries for design evaluations, and IME’s Dr. Peter Kee and Dr. Ilker Ocak for all the support they have provided us with standard cells, design reviews, and process information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakriya Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mohammed, Z., Gill, W.A., Rasras, M. (2017). Modelling and Optimization of Inertial Sensor-Accelerometer. In: Li, T., Liu, Z. (eds) Outlook and Challenges of Nano Devices, Sensors, and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-50824-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50824-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50822-1

  • Online ISBN: 978-3-319-50824-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics