Skip to main content

Digital Production Pipeline for Virtual Cultural Heritage Applications Using Interactive Storytelling

  • Chapter
  • First Online:
Information Systems and Management in Media and Entertainment Industries

Abstract

Preserving the past within the collective memories of people is one of the ultimate goals of creative industries. Virtual cultural heritage applications recreate history by inviting users to travel back in time. One of the more popular approaches for enhancing the immersion of time-travellers within virtual environments is interactive digital story-telling, which enables users to learn while exploring. While the process of developing interactive digital story-telling applications is still complex, involving professionals from various artistic and scientific disciplines, significant technological advances have recently been made towards improving content production. Namely, advanced Earth observation systems are capable of capturing hundreds of thousands of points within a second, thus creating extremely accurate representations of artefacts such as cultural sites. Usually mounted on mobile and airborne platforms, they produce high-resolution point-clouds with densities ranging up to several hundred points per square meter. However, the lack of topology, huge data sizes, and the contained noise, requires new data processing, storage, and management approaches before these data can be successfully utilized. This chapter introduces an advanced pipeline for creating virtual worlds as environments for interactive digital story-telling applications. By considering the challenges and issues arising during this process, recent developments in content creation, warehousing, editing, and postproduction will be demonstrated through the usage scenario of the implemented end-user application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keys to Rome exhibition. (2014). International multimedia exhibition “Keys to Rome”, Rome, Sarajevo, Amsterdam, Alexandria, 2014, www.keys2rome.eu

  2. Lugmayr, A. (2013). Brief introduction into information systems and management research in media industries. In 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6.

    Google Scholar 

  3. V-MUST.NET. (2013). Virtual Museum Transnational Network Project, www.v-must.net

  4. Ferdani, D., Sartini, M., Vigliarolo, P., Denard, H., Prescott, A., Pescarin, S., et al. (2013). State of the art on Virtual Museums in Europe and outside Europe, V-Must.net Deliverable report. http://v-must.net/sites/default/files/D2.3b_StateOfArt_VirtualMuseums_final.pdf

  5. Tolva, J., & Martin, J. (2004). Making the transition from documentation to experience: The eternal Egypt project. In ICHIM 04Digital Culture and Heritage/Patrimoine & Culture Numrique, International.

    Google Scholar 

  6. Smallwood, C., Payne, A., Simon, K., Goodmaster, C., Limp, F., & Cothren, J. (2006). Lighting systems in three dimensional non-contact digitizing: A view from the virtual Hampson museum project. In 3DPVT06—In Proceedings of Computer Applications and Quantitative Methods in Archaeology CAA (pp. 954–961).

    Google Scholar 

  7. IVORY. (2010). Virtual museum of Inuit culture. http://www.rom.on.ca/exhibits/ivory/index.html

  8. Auschwitz. (2010). State Museum of Auschwitz/Birkenau. http://en.auschwitz.org/z/index.php?option=com_content&task=view&id=6&Itemid=8

  9. Kaelber, L. (2007). A memorial as virtual traumascape: Darkest tourism in 3d and cyber-space to the gas chambers of Auschwitz, e-Review of Tourism Research 5, 2 (June) (pp. 24–33).

    Google Scholar 

  10. Fama Collection. (2005). The siege: interactive chronology. http://www.famacollection.org/eng/fama-collection/the-siege-interactive-chronology/index.html

  11. Srebrenica: Mapping Genocide. (2012). http://www.srebrenica-mappinggenocide.com

  12. Rizvic, S., Sadzak, A., Hulusic, V., & Karahasanovic, A. (2012). Interactive digital storytelling in the Sarajevo survival tools virtual environment. In SCCG ‘12 Proceedings of the 28th Spring Conference on Computer Graphics (pp. 109–116). ACM New York, NY, USA ©2012, ISBN 978-1-4503-1977-5

    Google Scholar 

  13. Barry, A. (2006). Creating a virtuous circle between a museums on-line and physical spaces. In Proceedings of Museums and the Web 2006.

    Google Scholar 

  14. Murphy, D., & Pitt, I. J. (2001). Spatial sound enhancing virtual storytelling. In Proceedings of International Conference on Virtual Storytelling (pp. 20–29).

    Google Scholar 

  15. Brown, S., Ladeira, I., Winterbottom, C., & Blake, E. H. (2002). An investigation on the effects of mediation in a storytelling virtual environment. Tech. Rep. CS02-08-00, Department of Computer Science, University of Cape Town.

    Google Scholar 

  16. Walker, H. Q. N., Song, C., Kobayashii, A., & Hodges, L. F. (1999). Evaluating the importance of multisensory input on memory and the sense of presence in virtual environments. In Proceedings of the IEEE Virtual Reality (pp. 222–228).

    Google Scholar 

  17. Tuck, D., & Kuksa, I. (2009). Virtual heritage tours: Developing interactive narrative-based environments for historical Sites. In Second Joint International Conference on Interactive Digital Storytelling—ICIDS (Vol. 5915, pp. 336–339), Portugal.

    Google Scholar 

  18. Pietroni, E., & Antinucci, F. (2010). “The Approval of the Franciscan Rule”—Virtual experience among the characters of Giotto’s work. In Proceedings of The 11th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage.

    Google Scholar 

  19. Guidazzoli, A., Baglivo, A., De Luca, D., Imboden, S., Liguori, M. C., & Rivalta, A. (2014). Crossmedia integration of 3D contents for cultural communication. In Proceedings of 3DTV-Conference: The True Vision—Capture, Transmission and Display of 3D Video (3DTV-CON), 2014.

    Google Scholar 

  20. Guidazzoli, A., Liguori, M. C., & Felicori, M. (2012). Collecting, sharing, reusing geo and time-variant 3D models of the City of Bologna: An open project. In Proceedings of Virtual Systems and Multimedia (VSMM) (pp. 611–614) (Casalecchio di Reno).

    Google Scholar 

  21. Ponti, F. D., De Luca, D., Guidazzoli, A., Imboden, S., & Liguori, M. C. (2013). 3D computer graphics short films for communicating cultural heritage: An open source pipeline, Digital Heritage International Congress (DigitalHeritage), (Volume: 2) (Casalecchio di Reno).

    Google Scholar 

  22. Lugmayr, A. (2013). Issues & Approach in Defining a European Research Agenda on Information Systems and Management in Creative eMedia Industries. In E. Stojmenova & A. Lugmayr (Eds.), Proceedings of the 1st Workshop on Defining a European Research Agenda on Information Systems and Management in eMedia Industries (in conjunction with eBled, Bled, Slovenia). Bled, Slovenia: lugymedia Inc., International Ambient Media Organization (AMEA) (pp. 17–25).

    Google Scholar 

  23. Shan, J., & Toth, C. K. (Eds.). (2008). Topographic laser ranging and scanning: principles and processing. CRC Press.

    Google Scholar 

  24. Vosselman, G., & Maas, H.-G. (Eds.). (2010). Airborne and terrestrial laser scanning. Whittles.

    Google Scholar 

  25. Liang, Haida. (2012). Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Applied Physics A, 106(2), 309–323.

    Article  Google Scholar 

  26. ISPRS. (2011). Annual report. Available at: http://www.isprs.org/news/newsletter/2012-01/

  27. Maune, D. F. (2008). Aerial mapping and surveying. In S. O. Dewberry & L. N. Rauenzahn (Eds.), Land development hand-book (3 ed., pp. 877–910). McGraw-Hill Professional.

    Google Scholar 

  28. Blasch, E., Bosse, E., & Lambert, D. A. (Eds.). (2012). High-level information fusion management and systems design. Artech House.

    Google Scholar 

  29. Najman, L., & Talbot, H. (Eds.). (2013). Mathematical morphology. New York: Wiley.

    Google Scholar 

  30. Salembier, C., Philippe, J., & Wilkinson, M. (2010). Connected operators: A review of region-based morphological image processing techniques.

    Google Scholar 

  31. Pesaresi, M., & Benediktsson, J. A. (2001). A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(2), 1940–1949.

    Article  Google Scholar 

  32. Ouzounis, G. K., Pesaresi, M., & Soille, P. (2012). Differential area profiles: Decomposition properties and efficient computation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1533–1548.

    Article  Google Scholar 

  33. Mongus, D., & Žalik, Borut. (2012). Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 1–12.

    Article  Google Scholar 

  34. Mongus, D., & Žalik, B. (2014). Computationally efficient method for the generation of a digital terrain model from airborne LiDAR data using connected operators. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 340–351.

    Google Scholar 

  35. Mongus, D., Lukač, N., & Žalik, B. (2014). Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces. ISPRS Journal of Photogrammetry and Remote Sensing.

    Google Scholar 

  36. Haugerud, R. A., & Harding, D. J. (2001). Some algorithms for virtual deforestation (VDF) of LiDAR topographic survey data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (34(Part 3/ W4), pp. 211–218).

    Google Scholar 

  37. Zhang, K., Yan, J., & Chen, S. C. (2006). Automatic construction of building footprints from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523–2533.

    Google Scholar 

  38. Mongus, D., Lukac, N., Obrul, D., & Žalik, B. (2013). Detection of planar points for building extraction from LiDAR data based on differential morphological and attribute profiles. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (II-3 W 1, pp. 21–26).

    Google Scholar 

  39. Choi, M., Young Kim, R., Nam, M. -R., & Oh Kim, H. (2005). Fusion of multispectral and panchromatic satellite images using the curvelet transform. Geoscience and Remote Sensing Letters, IEEE, 2(2), 136–140.

    Google Scholar 

  40. Mallet, C., Bretar, F., & Soergel, U. (2008). Analysis of full-waveform LiDAR data for classification of urban areas. Photogrammetrie Fernerkundung Geoinformation, 5, 337–349.

    Google Scholar 

  41. Salah, M., Trinder, J., & Shaker, A. (2009). Evaluation of the self-organizing map classifier for building detection from LiDAR data and multispectral aerial images. Journal of Spatial Science, 54(2), 15–34.

    Article  Google Scholar 

  42. Hermosilla, T., Ruiz, L. A., Recio, J. A., & Estornell, J. (2011). Evaluation of automatic building detection approaches combining high resolution images and LiDAR data. Remote Sensing, 3(6), 1188–1210.

    Article  Google Scholar 

  43. Repnik, B., & Žalik, B. (2012). A fast algorithm for approximate surface reconstruction from sampled points. Advances in Engineering Software, 53, 72–78.

    Article  Google Scholar 

  44. Mullen, P., Goes, F. D., Desbrun, M., Cohen-Steiner, D., & Alliez, P. (2010). Signing the unsigned: robust surface reconstruction from raw pointsets. Comput Graph Forum, 29(5), 1733–41.

    Article  Google Scholar 

  45. Fox, A., & Brewer, E. (1999). Harvest, yield and scalable tolerant systems. In Proceedings of 7th Workshop Hot Topics in Operating Systems (HotOS 99) (pp. 174–178), IEEE CS, 1999.

    Google Scholar 

  46. Hecht, R., & Jablonski, S. (2011). NoSQL evaluation: A use case oriented survey. In Proceedings of the 2011 International Conference on Cloud and Service Computing. IEEE Computer Society.

    Google Scholar 

  47. Fielding, R. T., & Taylor, Richard N. (2002). Principled design of the modern web architecture. ACM Transactions on Internet Technology, 2(2), 115–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luka Pavlič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Pavlič, L., Rizvić, S., Mongus, D. (2016). Digital Production Pipeline for Virtual Cultural Heritage Applications Using Interactive Storytelling. In: Lugmayr, A., Stojmenova, E., Stanoevska, K., Wellington, R. (eds) Information Systems and Management in Media and Entertainment Industries. International Series on Computer Entertainment and Media Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49407-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49407-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49405-0

  • Online ISBN: 978-3-319-49407-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics