Skip to main content

Challenge and Potential for Research on Gene-Environment Interactions in Autism Spectrum Disorder

  • Chapter
  • First Online:
Gene-Environment Transactions in Developmental Psychopathology

Abstract

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder defined by impairment in social communication and repetitive behaviors. Twin and family studies strongly support a genetic contribution to ASD risk but also indicate an important role for environmental factors, particularly non-shared environmental factors, which can include gene-environment interactions. An accelerating array of research has identified rare genetic risk factors in ASD. Rare prenatal exposures, such as valproic acid or rubella, also suggest a role for uncommon environmental risk factors in ASD. Less robust data support specific common genetic or environmental risk factors. A handful of studies have begun to explore the potential interaction between individual risk factors. Thus far, the most informative approach has been to evaluate potential common factors contributing risk within the context of a rare disorder with a high risk of ASD, such as fragile X syndrome or tuberous sclerosis. Extending beyond this approach will require careful attention to the potential biological relationships between individual risk factors, which may require initial studies in animal models before extending into human populations. Here, we review the initial forays into gene-environment interaction research in ASD and lay out the challenges and opportunities for future research in this important domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M., Lucock, M., Stuart, J., Fardell, S., Baker, K., & Ng, X. (2007). Preliminary evidence for involvement of the folate gene polymorphism 19 bp deletion-DHFR in occurrence of autism. Neuroscience Letters, 422(1), 24–29. doi:10.1016/j.neulet.2007.05.025.

    Article  PubMed  Google Scholar 

  • Al-Farsi, Y. M., Waly, M. I., Deth, R. C., Al-Sharbati, M. M., Al-Shafaee, M., Al-Farsi, O., … Ouhtit, A. (2013). Low folate and vitamin B12 nourishment is common in Omani children with newly diagnosed autism. Nutrition, 29(3), 537–541. doi:10.1016/j.nut.2012.09.014.

  • American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: Dsm-5. Washington, DC: American Psychiatric Publishing Incorporated.

    Book  Google Scholar 

  • Anney, R., Klei, L., Pinto, D., Almeida, J., Bacchelli, E., Baird, G., … Devlin, B. (2012). Individual common variants exert weak effects on the risk for autism spectrum disorderspi. Human Molecular Genetics, 21(21), 4781–4792. doi:10.1093/hmg/dds301.

  • Asbury, K., Almeida, D., Hibel, J., Harlaar, N., & Plomin, R. (2008). Clones in the classroom: A daily diary study of the nonshared environmental relationship between monozygotic twin differences in school experience and achievement. Twin Research and Human Genetics, 11(6), 586–595. doi:10.1375/twin.11.6.586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashley, C. T., Sutcliffe, J. S., Kunst, C. B., Leiner, H. A., Eichler, E. E., Nelson, D. L., & Warren, S. T. (1993). Human and murine FMR-1: Alternative splicing and translational initiation downstream of the CGG-repeat. Nature Genetics, 4(3), 244–251. doi:10.1038/ng0793-244.

    Article  PubMed  Google Scholar 

  • Atladottir, H. O., Thorsen, P., Ostergaard, L., Schendel, D. E., Lemcke, S., Abdallah, M., & Parner, E. T. (2010). Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(12), 1423–1430. doi:10.1007/s10803-010-1006-y.

    Article  PubMed  Google Scholar 

  • Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25(1), 63–77.

    Article  PubMed  Google Scholar 

  • Bear, M. F., Huber, K. M., & Warren, S. T. (2004). The mGluR theory of fragile X mental retardation. Trends in Neurosciences, 27(7), 370–377. doi:10.1016/j.tins.2004.04.009.

    Article  PubMed  Google Scholar 

  • Berry-Kravis, E. (2014). Mechanism-based treatments in neurodevelopmental disorders: fragile X syndrome. Pediatric Neurology, 50(4), 297–302. doi:10.1016/j.pediatrneurol.2013.12.001.

    Article  PubMed  Google Scholar 

  • Bolton, P. F., & Griffiths, P. D. (1997). Association of tuberous sclerosis of temporal lobes with autism and atypical autism. Lancet, 349(9049), 392–395. doi:10.1016/S0140-6736(97)80012-8.

    Article  PubMed  Google Scholar 

  • Boris, M., Goldblatt, A., Galanko, J., & James, S. J. (2004). Association of MTHFR gene variants with autism. Journal of the American Physicians and Surgeons, 9(4), 106–108.

    Google Scholar 

  • Brown, A. S. (2012). Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Developmental Neurobiology, 72(10), 1272–1276. doi:10.1002/dneu.22024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaste, P., & Leboyer, M. (2012). Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience, 14(3), 281–292.

    PubMed  PubMed Central  Google Scholar 

  • Cheslack-Postava, K., Suominen, A., Jokiranta, E., Lehti, V., McKeague, I. W., Sourander, A., & Brown, A. S. (2014). Increased risk of autism spectrum disorders at short and long interpregnancy intervals in Finland. Journal of the American Academy of Child and Adolescent Psychiatry, 53(10), 1074–1081 e1074. doi:10.1016/j.jaac.2014.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chess, S. (1971). Autism in children with congenital rubella. Journal of Autism and Childhood Schizophrenia, 1(1), 33–47.

    Article  PubMed  Google Scholar 

  • Chess, S. (1977). Follow-up report on autism in congenital rubella. Journal of Autism and Childhood Schizophrenia, 7(1), 69–81.

    Article  PubMed  Google Scholar 

  • Christensen, J., Gronborg, T. K., Sorensen, M. J., Schendel, D., Parner, E. T., Pedersen, L. H., & Vestergaard, M. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 309(16), 1696–1703. doi:10.1001/jama.2013.2270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Czyz, W., Morahan, J. M., Ebers, G. C., & Ramagopalan, S. V. (2012). Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Medicine, 10, 93. doi:10.1186/1741-7015-10-93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J., … Varley, J. (2010). Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model. Pediatrics, 125(1), e17–e23. doi:10.1542/peds.2009-0958.

  • Derogatis, L. R., & Savitz, K. L. (1999). The SCL-90-R, Brief Symptom Inventory, and Matching Clinical Rating Scales. In M. E. Maruish (Ed.), The use of psychological testing for treatment planning and outcomes assessment (2nd ed., pp. 679–724). Mahwah, NJ, USA: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–237. doi:10.1016/j.gde.2012.03.002.

    Article  Google Scholar 

  • Dolen, G., & Bear, M. F. (2008). Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. The Journal of Physiology, 586(6), 1503–1508. doi:10.1113/jphysiol.2008.150722.

    Article  PubMed  Google Scholar 

  • Dong, S., Walker, M. F., Carriero, N. J., DiCola, M., Willsey, A. J., Ye, A. Y., … Sanders, S. J. (2014). De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. Cell Reports, 9(1), 16–23. doi:10.1016/j.celrep.2014.08.068.

  • Ehninger, D. (2013). From genes to cognition in tuberous sclerosis: Implications for mTOR inhibitor-based treatment approaches. Neuropharmacology, 68, 97–105. doi:10.1016/j.neuropharm.2012.05.015.

    Article  PubMed  Google Scholar 

  • Ehninger, D., Sano, Y., de Vries, P. J., Dies, K., Franz, D., Geschwind, D. H., … Silva, A. J. (2012). Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Molecular Psychiatry, 17(1), 62–70. doi:10.1038/mp.2010.115.

  • Fatemi, S. H., Pearce, D. A., Brooks, A. I., & Sidwell, R. W. (2005). Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: A potential animal model for schizophrenia and autism. Synapse, 57(2), 91–99. doi:10.1002/syn.20162.

    Article  PubMed  Google Scholar 

  • Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18(4), 297–321.

    Article  PubMed  Google Scholar 

  • Gardener, H., Spiegelman, D., & Buka, S. L. (2011). Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics, 128(2), 344–355. doi:10.1542/peds.2010-1036.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., … Buxbaum, J. D. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881–885. doi:10.1038/ng.3039.

  • Gillberg, I. C., Gillberg, C., & Ahlsen, G. (1994). Autistic behaviour and attention deficits in tuberous sclerosis: A population-based study. Developmental Medicine and Child Neurology, 36(1), 50–56.

    Article  PubMed  Google Scholar 

  • Hall, S. S., Lightbody, A. A., Hirt, M., Rezvani, A., & Reiss, A. L. (2010). Autism in fragile X syndrome: A category mistake? Journal of the American Academy of Child and Adolescent Psychiatry, 49(9), 921–933. doi:10.1016/j.jaac.2010.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., … Risch, N. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102. doi:10.1001/archgenpsychiatry.2011.76.

  • Hessl, D., Dyer-Friedman, J., Glaser, B., Wisbeck, J., Barajas, R. G., Taylor, A., & Reiss, A. L. (2001). The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragile X syndrome. Pediatrics, 108(5), E88.

    Article  PubMed  Google Scholar 

  • Hill, M., Shannahan, K., Jasinski, S., Macklin, E. A., Raeke, L., Roffman, J. L., & Goff, D. C. (2011). Folate supplementation in schizophrenia: a possible role for MTHFR genotype. Schizophrenia Research, 127(1–3), 41–45. doi:10.1016/j.schres.2010.12.006.

    Article  PubMed  Google Scholar 

  • Howard, J. S., Sparkman, C. R., Cohen, H. G., Green, G., & Stanislaw, H. (2005). A comparison of intensive behavior analytic and eclectic treatments for young children with autism. Research in Developmental Disabilities, 26(4), 359–383. doi:10.1016/j.ridd.2004.09.005.

    Article  PubMed  Google Scholar 

  • Huguet, G., Ey, E., & Bourgeron, T. (2013). The genetic landscapes of autism spectrum disorders. Annual Review of Genomics and Human Genetics, 14, 191–213. doi:10.1146/annurev-genom-091212-153431.

    Article  PubMed  Google Scholar 

  • Hunt, A., & Dennis, J. (1987). Psychiatric disorder among children with tuberous sclerosis. Developmental Medicine and Child Neurology, 29(2), 190–198.

    Article  PubMed  Google Scholar 

  • Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., … Wigler, M. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216–221. doi:10.1038/nature13908.

  • James, S. J., Melnyk, S., Jernigan, S., Cleves, M. A., Halsted, C. H., Wong, D. H., … Bradstreet, J. J. (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141(8), 947–956.

    Google Scholar 

  • James, S. J., Melnyk, S., Jernigan, S., Pavliv, O., Trusty, T., Lehman, S., … Cleves, M. A. (2010). A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(6), 1209–1220. doi:10.1002/ajmg.b.31094.

  • James, S. J., Pogribna, M., Pogribny, I. P., Melnyk, S., Hine, R. J., Gibson, J. B., … Gaylor, D. W. (1999). Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. The American Journal of Clinical Nutrition, 70(4), 495–501.

    Google Scholar 

  • Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews. Neurology, 10(2), 74–81. doi:10.1038/nrneurol.2013.278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. S., & Leventhal, B. L. (2015). Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biological Psychiatry, 77(1), 66–74. doi:10.1016/j.biopsych.2014.11.001.

    Article  PubMed  Google Scholar 

  • Klei, L., Sanders, S. J., Murtha, M. T., Hus, V., Lowe, J. K., Willsey, A. J., … Devlin, B. (2012). Common genetic variants, acting additively, are a major source of risk for autism. Molecular Autism, 3(1), 9. doi:10.1186/2040-2392-3-9.

  • Kolevzon, A., Gross, R., & Reichenberg, A. (2007). Prenatal and perinatal risk factors for autism: A review and integration of findings. Archives of Pediatrics & Adolescent Medicine, 161(4), 326–333. doi:10.1001/archpedi.161.4.326.

    Article  Google Scholar 

  • Kremer, E. J., Pritchard, M., Lynch, M., Yu, S., Holman, K., Baker, E., … Richards, R. I. (1991). Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science, 252(5013), 1711–1714.

    Google Scholar 

  • Lampi, K. M., Hinkka-Yli-Salomaki, S., Lehti, V., Helenius, H., Gissler, M., Brown, A. S., & Sourander, A. (2013). Parental age and risk of autism spectrum disorders in a Finnish national birth cohort. Journal of Autism and Developmental Disorders, 43(11), 2526–2535. doi:10.1007/s10803-013-1801-3.

    Article  PubMed  Google Scholar 

  • Landrigan, P. J. (2010). What causes autism? Exploring the environmental contribution. Current Opinion in Pediatrics, 22(2), 219–225. doi:10.1097/MOP.0b013e328336eb9a.

    Article  PubMed  Google Scholar 

  • Leekam, S. R., Libby, S. J., Wing, L., Gould, J., & Taylor, C. (2002). The Diagnostic Interview for Social and Communication Disorders: Algorithms for ICD-10 childhood autism and Wing and Gould autistic spectrum disorder. Journal of Child Psychology and Psychiatry, 43(3), 327–342.

    Article  PubMed  Google Scholar 

  • Levy, D., Ronemus, M., Yamrom, B., Lee, Y. H., Leotta, A., Kendall, J., … Wigler, M. (2011). Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 70(5), 886–897. doi:10.1016/j.neuron.2011.05.015.

  • Libbey, J. E., Sweeten, T. L., McMahon, W. M., & Fujinami, R. S. (2005). Autistic disorder and viral infections. Journal of Neurovirology, 11(1), 1–10. doi:10.1080/13550280590900553.

    Article  PubMed  Google Scholar 

  • Lipton, J. O., & Sahin, M. (2014). The neurology of mTOR. Neuron, 84(2), 275–291. doi:10.1016/j.neuron.2014.09.034.

    Article  PubMed  PubMed Central  Google Scholar 

  • London, E. A. (2000). The environment as an etiologic factor in autism: A new direction for research. Environmental Health Perspectives, 108(Suppl 3), 401–404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamidala, M. P., Polinedi, A., P T V, P. K., Rajesh, N., Vallamkonda, O. R., Udani, V., … Rajesh, V. (2013). Prenatal, perinatal and neonatal risk factors of Autism Spectrum Disorder: A comprehensive epidemiological assessment from India. Research in Developmental Disabilities, 34(9), 3004–3013. doi:10.1016/j.ridd.2013.06.019.

  • Mann, J. R., McDermott, S., Bao, H., Hardin, J., & Gregg, A. (2010). Pre-eclampsia, birth weight, and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(5), 548–554. doi:10.1007/s10803-009-0903-4.

    Article  PubMed  Google Scholar 

  • McPheeters, M. L., Warren, Z., Sathe, N., Bruzek, J. L., Krishnaswami, S., Jerome, R. N., & Veenstra-Vanderweele, J. (2011). A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics, 127(5), e1312–e1321. doi:10.1542/peds.2011-0427.

    Article  PubMed  Google Scholar 

  • Nosarti, C., Reichenberg, A., Murray, R. M., Cnattingius, S., Lambe, M. P., Yin, L., … Hultman, C. M. (2012). Preterm birth and psychiatric disorders in young adult life. Archives of General Psychiatry, 69(6), E1–E8. doi:10.1001/archgenpsychiatry.2011.1374.

  • O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., … Eichler, E. E. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246–250. doi:10.1038/nature10989.

  • O’Donnell, W. T., & Warren, S. T. (2002). A decade of molecular studies of fragile X syndrome. Annual Review of Neuroscience, 25, 315–338. doi:10.1146/annurev.neuro.25.112701.142909.

    Article  PubMed  Google Scholar 

  • Ornoy, A. (2009). Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reproductive Toxicology, 28(1), 1–10. doi:10.1016/j.reprotox.2009.02.014.

    Article  PubMed  Google Scholar 

  • O’Roak, B. J., Stessman, H. A., Boyle, E. A., Witherspoon, K. T., Martin, B., Lee, C., … Eichler, E. E. (2014). Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nature Communications, 5, 5595. doi:10.1038/ncomms6595.

  • Patterson, P. H. (2011). Maternal infection and immune involvement in autism. Trends in Molecular Medicine, 17(7), 389–394. doi:10.1016/j.molmed.2011.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plomin, R. (2011). Commentary: Why are children in the same family so different? Non-shared environment three decades later. International Journal of Epidemiology, 40(3), 582–592. doi:10.1093/ije/dyq144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poultney, C. S., Samocha, K., Kou, Y., Liu, L., Walker, S., Singh, T., … Roeder, K. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215. doi:10.1038/nature13772.

  • Richler, J., Bishop, S. L., Kleinke, J. R., & Lord, C. (2007). Restricted and repetitive behaviors in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 73–85. doi:10.1007/s10803-006-0332-6.

    Article  PubMed  Google Scholar 

  • Richler, J., Huerta, M., Bishop, S. L., & Lord, C. (2010). Developmental trajectories of restricted and repetitive behaviors and interests in children with autism spectrum disorders. Development and Psychopathology, 22(1), 55–69. doi:10.1017/S0954579409990265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roffman, J. L., Gollub, R. L., Calhoun, V. D., Wassink, T. H., Weiss, A. P., Ho, B. C., … Manoach, D. S. (2008). MTHFR 677C --> T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val --> Met. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17573–17578. doi:10.1073/pnas.0803727105.

    Google Scholar 

  • Roffman, J. L., Lamberti, J. S., Achtyes, E., Macklin, E. A., Galendez, G. C., Raeke, L. H., … Goff, D. C. (2013). Randomized multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia. JAMA Psychiatry, 70(5), 481–489. doi:10.1001/jamapsychiatry.2013.900.

  • Roffman, J. L., Weiss, A. P., Purcell, S., Caffalette, C. A., Freudenreich, O., Henderson, D. C., … Goff, D. C. (2008). Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biological Psychiatry, 63(1), 42–48. doi:10.1016/j.biopsych.2006.12.017.

    Google Scholar 

  • Ronemus, M., Iossifov, I., Levy, D., & Wigler, M. (2014). The role of de novo mutations in the genetics of autism spectrum disorders. Nature Reviews. Genetics, 15(2), 133–141. doi:10.1038/nrg3585.

    Article  PubMed  Google Scholar 

  • Roth, C., Magnus, P., Schjolberg, S., Stoltenberg, C., Suren, P., McKeague, I. W., … Susser, E. (2011). Folic acid supplements in pregnancy and severe language delay in children. JAMA, 306(14), 1566–1573. doi:10.1001/jama.2011.1433.

  • Sahin, M. (2012). Targeted treatment trials for tuberous sclerosis and autism: No longer a dream. Current Opinion in Neurobiology, 22(5), 895–901. doi:10.1016/j.conb.2012.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sallows, G. O., & Graupner, T. D. (2005). Intensive behavioral treatment for children with autism: Four-year outcome and predictors. American Journal of Mental Retardation, 110(6), 417–438. doi:10.1352/0895-8017(2005)110[417:IBTFCW]2.0.CO;2.

    Article  PubMed  Google Scholar 

  • Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., … State, M. W. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70(5), 863–885. doi:10.1016/j.neuron.2011.05.002.

  • Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., … State, M. W. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241. doi:10.1038/nature10945.

  • Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A. (2014). The familial risk of autism. JAMA, 311(17), 1770–1777. doi:10.1001/jama.2014.4144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite, T. D., & Baker, J. T. (2014). How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development? Current Opinion in Neurobiology, 30C, 85–91. doi:10.1016/j.conb.2014.10.005.

    Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics, C (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421–427. doi:10.1038/nature13595.

    Article  Google Scholar 

  • Schmidt, R. J., Hansen, R. L., Hartiala, J., Allayee, H., Schmidt, L. C., Tancredi, D. J., … Hertz-Picciotto, I. (2011). Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology, 22(4), 476–485. doi:10.1097/EDE.0b013e31821d0e30.

  • Schmidt, R. J., Tancredi, D. J., Ozonoff, S., Hansen, R. L., Hartiala, J., Allayee, H., … Hertz-Picciotto, I. (2012). Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. The American Journal of Clinical Nutrition, 96(1), 80–89. doi:10.3945/ajcn.110.004416.

  • Smalley, S. L., Tanguay, P. E., Smith, M., & Gutierrez, G. (1992). Autism and tuberous sclerosis. Journal of Autism and Developmental Disorders, 22(3), 339–355.

    Article  PubMed  Google Scholar 

  • Stromland, K., Nordin, V., Miller, M., Akerstrom, B., & Gillberg, C. (1994). Autism in thalidomide embryopathy: A population study. Developmental Medicine and Child Neurology, 36(4), 351–356.

    Article  PubMed  Google Scholar 

  • Stromswold, K. (2006). Why aren’t identical twins linguistically identical? Genetic, prenatal and postnatal factors. Cognition, 101(2), 333–384. doi:10.1016/j.cognition.2006.04.007.

    Article  PubMed  Google Scholar 

  • Suren, P., Roth, C., Bresnahan, M., Haugen, M., Hornig, M., Hirtz, D., … Stoltenberg, C. (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA, 309(6), 570–577. doi:10.1001/jama.2012.155925.

  • Tordjman, S., Somogyi, E., Coulon, N., Kermarrec, S., Cohen, D., Bronsard, G., … Xavier, J. (2014). Gene x Environment interactions in autism spectrum disorders: Role of epigenetic mechanisms. Frontiers in Psychiatry, 5, 53. doi:10.3389/fpsyt.2014.00053.

  • Veenstra-VanderWeele, J., & Blakely, R. D. (2012). Networking in autism: Leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology, 37(1), 196–212. doi:10.1038/npp.2011.185.

    Article  PubMed  Google Scholar 

  • Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., … Caskey, T. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65(5), 905–914.

    Google Scholar 

  • Volk, H. E., Kerin, T., Lurmann, F., Hertz-Picciotto, I., McConnell, R., & Campbell, D. B. (2014). Autism spectrum disorder: Interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology, 25(1), 44–47. doi:10.1097/EDE.0000000000000030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren, Z., McPheeters, M. L., Sathe, N., Foss-Feig, J. H., Glasser, A., & Veenstra-Vanderweele, J. (2011). A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics, 127(5), e1303–e1311. doi:10.1542/peds.2011-0426.

    Article  PubMed  Google Scholar 

  • Windham, G. C., Anderson, M. C., Croen, L. A., Smith, K. S., Collins, J., & Grether, J. K. (2011). Birth prevalence of autism spectrum disorders in the San Francisco Bay area by demographic and ascertainment source characteristics. Journal of Autism and Developmental Disorders, 41(10), 1362–1372. doi:10.1007/s10803-010-1160-2.

    Article  PubMed  Google Scholar 

  • Xu, G., Jing, J., Bowers, K., Liu, B., & Bao, W. (2014). Maternal diabetes and the risk of autism spectrum disorders in the offspring: A systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 44(4), 766–775. doi:10.1007/s10803-013-1928-2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Veenstra-VanderWeele M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wender, C.L.A., Veenstra-VanderWeele, J. (2017). Challenge and Potential for Research on Gene-Environment Interactions in Autism Spectrum Disorder. In: Tolan, P., Leventhal, B. (eds) Gene-Environment Transactions in Developmental Psychopathology. Advances in Development and Psychopathology: Brain Research Foundation Symposium Series, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-49227-8_9

Download citation

Publish with us

Policies and ethics