Skip to main content

Organic Floating Gate Memory Structures

  • Chapter
  • First Online:
Charge-Trapping Non-Volatile Memories

Abstract

The evolution of information and communication technologies in the last few years resulted in more demands for new data storage systems benefit from higher storage capacities. The new applications and devices in the market such as high definition TVs, iPADs, iPODs, Kindles, MP3s and smart phones operate through the storage of large amounts of data. Most of these devices are portable for everyday use for communication or entertainment purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Salvo, Silicon non-volatile memories: paths of innovation, 2nd edn. (Wiley, New York, 2013)

    Google Scholar 

  2. J. Brewer, ‎M. Gill, Nonvolatile memory technologies with emphasis on flash. (IEEE Press Series on Microelectronics System, NY, USA, 2011)

    Google Scholar 

  3. Z. Chun, C. Zhao, S. Taylor, P. Chalker, Review on non-volatile memory with high-k dielectrics: flash for generation beyond 32 nm. Materials 7, 5117 (2014)

    Article  Google Scholar 

  4. G. Liu, X. Zhuang, Y. Chen, B. Zhang, J. Zhu, C. Zhu, K. Neoh, E.T. Kang, Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Appl. Phys. Lett. 95, 253301 (2009)

    Article  Google Scholar 

  5. M.F. Mabrook, Y. Yun, C. Pearson, D.A. Zeze, M.C. Petty, Charge storage in pentacene/polymethylmethacrylate memory devices. IEEE Electron. Dev. Lett. 30, 632 (2009)

    Article  Google Scholar 

  6. M.F. Mabrook, Y. Yun, C. Pearson, D.A. Zeze, M.C. Petty, A pentacene-based organic thin film memory transistor. Appl. Phys. Lett. 94, 173302 (2009)

    Article  Google Scholar 

  7. C.A. Nguyen, S.G. Mhaisalkar, J. Ma, P.S. Lee, Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric. Org. Electron. 9, 1087 (2008)

    Article  Google Scholar 

  8. K.H. Lee, G. Lee, K. Lee, M.S. Oh, S. Im, The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors. Appl. Phys. Lett. 94, 093304 (2009)

    Article  Google Scholar 

  9. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004)

    Article  Google Scholar 

  10. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516 (2009)

    Article  Google Scholar 

  11. Y.L. Guo, G. Yu, Y.Q. Liu, Functional organic field-effect transistors. Adv. Mater. 22, 4427 (2010)

    Article  Google Scholar 

  12. P. Heremans, G.H. Gelinck, R. Muller, K.J. Baeg, D.Y. Kim, Y.Y. Noh, Polymer and organic nonvolatile memory devices. Chem. Mater. 23, 341 (2011)

    Article  Google Scholar 

  13. W.L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dotz, S. Mhaisalkar, Towards printable organic thin film transistor based flash memory devices. J. Mater. Chem. 21, 5203 (2011)

    Article  Google Scholar 

  14. X.J. She, C.H. Liu, Q.J. Sun, X. Gao, S.D. Wang, Morphology control of tunneling dielectric towards high-performance organic field-effect transistor nonvolatile memory. Org. Electron. 13, 1908 (2012)

    Article  Google Scholar 

  15. P. Pavan, L. Larcher, A. Marmiroli, Floating gate devices: operation and compact modelling (Kluwer Academic Publishers, Boston, USA, 2004)

    Google Scholar 

  16. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  17. J. Singh, Semiconductor Devices: Basic Principles (Wiley, New York, 2002)

    Google Scholar 

  18. R.C.G. Naber, K. Asadi, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933 (2010)

    Article  Google Scholar 

  19. S.-J. Kim, Y.-S. Park, S.-H. Lyu, J.-S. Lee, Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers. Appl. Phys. Lett. 96, 033302 (2010)

    Article  Google Scholar 

  20. W. Lin, S. Liu, T. Gong, Q. Zhao, W. Huang, Polymer-based resistive memory materials and devices. Adv. Mater. 26, 570 (2014)

    Article  Google Scholar 

  21. J. Lee, Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J. Mater. Chem. 21, 14097 (2011)

    Article  Google Scholar 

  22. A. Sleiman, M.F Mabrook, R. R. Nejm, A. Ayesh, A. Al Ghaferi, M.C. Petty, D.A Zeze, Organic bistable devices utilizing carbon nanotubes embedded in poly(methyl methacrylate). J. Appl. Phys. 112, 024509 (2012)

    Google Scholar 

  23. M.H. Lee, J.H. Jung, J.H. Shim, T.W. Kim, Electrical bistabilities and stabilities of organic bistable devices fabricated utilizing [6,6]-phenyl-C85 butyric acid methyl ester blended into a polymethyl methacrylate layer. Org. Electron. 12, 1341 (2011)

    Google Scholar 

  24. C. W. Lin, D.Y. Wang, Y. Tai, Y.T. Jiang, M.C. Chen, C.C. Chen, Y.J. Yang, Y.F. Chen, Type-II heterojunction organic/inorganic hybrid non-volatile memory based on FeS2 nanocrystals embedded in poly(3-hexylthiophene). J. Phys. D: Appl. Phys. 44, 292002 (2011)

    Google Scholar 

  25. D. Son, D. Park, W.K. Choi, S.H. Cho, W.T. Kim, T.W. Kim, Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methylmethacrylate) polymer layer. Nanotechnology 20, 195203 (2009)

    Article  Google Scholar 

  26. S.D. Lck, K.T. Whan, S.J. Ho, J.J. Hun, L.D. Uk, L.J. Min, P. Won, C.W. Kook, Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett. 10, 2441 (2010)

    Article  Google Scholar 

  27. M. Alba-Martin, T. Firmager, J.J. Atherton, M.C. Rosamond, A.J. Gallant, M.C. Petty, A. Al Ghaferi, M. Mabrook, D. Zeze, Single-walled nanotube MIS memory devices. 11th IEEE conference on nanotechnology (IEEE-NANO), vol 991 (2011)

    Google Scholar 

  28. A. Ayesh, S. Qadri, V.J. Baboo, M.Y. Haik, Y. Haik, Nano-floating gate organic memory devices utilizing Ag–Cu nanoparticles embedded in PVA-PAA-glycerol polymer. Synth. Met. 183, 24 (2013)

    Article  Google Scholar 

  29. M. Alba-Martin, T. Firmager, J. Atherton, M. Rosamond, D. Ashall, A. Ghaferi, A. Ayesh, M. Mabrook, D. Zeze, Improved memory behaviour of single-walled carbon nanotubes charge storage nodes. J. Phys. D Appl. Phys. 45, 295401 (2012)

    Article  Google Scholar 

  30. S.J. Fakher, M.F. Mabrook, Floating gate organic memory with low-voltage operation. In Dekker Encyclopedia of Nanoscience and Nanotechnology, 2nd edn. (Taylor and Francis, New York, 8 p., 2013)

    Google Scholar 

  31. S.J. Fakher, D. Ashall, M.F. Mabrook, low-voltage organic memory transistors. 11th IEEE international conference on nanotechnology, Portland, Oregon, USA, pp. 1693–1698. 15–18 Aug 2011

    Google Scholar 

  32. M.F. Mabrook, C. Pearson, D. Kolb, D.A. Zeze, M.C. Petty, Memory effects in hybrid silicon-metallic nanoparticle-organic thin film structures. Org. Electron. 9, 816 (2008)

    Article  Google Scholar 

  33. Y. Yun, C. Pearson, M.C. Petty, Pentacene thin film transistors with a poly(methyl methacrylate) gate dielectric: optimization of device performance. Appl. Phys. 105, 034508 (2009)

    Article  Google Scholar 

  34. A. Sleiman, A. Albuquerque, S. Fakher, P.W. Sayers, M.F. Mabrook, Gold nanoparticles as a floating gate in pentacene/PVP based MIS memory devices. 12th IEEE-NANO conference, Birmingham, UK, p. 1616 (2012)

    Google Scholar 

  35. A.S. Jombert, K.S. Coleman, D. Wood, M.C. Petty, D.A. Zeze, Poole–Frenkel conduction in single wall carbon nanotube composite films built up by electrostatic layer-by-layer deposition. J. Appl. Phys. 104, 094503 (2008)

    Article  Google Scholar 

  36. S. Fakher, R. Nejm, A. Ayesh, A. AL-Ghaferi, D. Zeze, M.F. Mabrook, Single-walled carbon-nanotubes-based organic memory structures. Molecules, 21(9), 1166 (2016)

    Google Scholar 

  37. S.J. Fakher, M.F. Mabrook, Fabrication and characterization of non-volatile organic thin film memory transistors operating at low programming voltages. Eur. Phys. J. Appl. Phys. 60, 10201 (2012)

    Article  Google Scholar 

  38. S.J. Kim, J.S. Lee, Flexible organic transistor memory devices. Nano Lett. 10, 2884 (2010)

    Article  Google Scholar 

  39. J.S. Lee, J. Cho, C. Lee, I. Kim, J. Park, Y.M. Kim, H. Shin, J. Lee, F. Caruso, Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nat. Nanotechnol. 2, 790 (2007)

    Article  Google Scholar 

  40. K.J. Baeg, Y.Y. Noh, H. Sirringhaus, D.Y. Kim, Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory. Adv. Funct. Mater. 20, 224 (2010)

    Article  Google Scholar 

  41. A. Guo, Y. Fu, C. Wang, L. Guan, J. Liu, Z. Shi, Z. Gu, R. Huang, X. Zhang, Two-bit memory devices based on single-wall carbon nanotubes: demonstration and mechanism. Nanotechnology 18, 125206 (2007)

    Article  Google Scholar 

  42. W.T. Kim, J.H. Jung, T.W. Kim, Carrier transport mechanisms in nonvolatile memory devices fabricated utilizing multiwalled carbon nanotubes embedded in a poly-4-vinyl-phenol layer. Appl. Phys. Lett. 95, 022104 (2009)

    Article  Google Scholar 

  43. L.P. Ma, J. Liu, Y. Yang, Organic electrical bistable devices and rewritable memory cells. Appl. Phys. Lett. 80, 2997 (2002)

    Article  Google Scholar 

  44. L.P. Ma, S. Pyo, O. Jianyong, X. Qianfei, Y. Yang, Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl. Phys. Lett. 82, 1419 (2003)

    Article  Google Scholar 

  45. J.Z. Wu, Q. He, Y. Tian, G. Mao, X. Hou, Dependence of the organic nonvolatile memory performance on the location of ultra-thin Ag film. J. Phys. D: Appl. Phys. 43, 035101 (2010)

    Article  Google Scholar 

  46. A. Parakash, J. Ouyang, J.L. Lin, Y. Yang, Polymer memory device based on conjugated polymer and gold nanoparticles. J. Appl. Phys. 100, 054309 (2006)

    Article  Google Scholar 

  47. M.A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970)

    Google Scholar 

  48. M. Lauters, B. McCarthy, D. Sarid, G.E. Jabbour, Multilevel conductance switching in polymer films. Appl. Phys. Lett. 89, 013507 (2006)

    Article  Google Scholar 

  49. M. Arif, M. Yun, S. Gangopadhyay, K. Ghosh, L. Fadiga, F. Galbrecht, U. Scherf, S. Guha, Polyfluorene as a model system for space-charge-limited conduction. Phys. Rev. B 75, 195202 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work is adapted from:

Sundes Juma Fakher, “Advanced Study of Pentacene-Based Organic Memory Structures”, Ph.D. Thesis, School of Electronic Engineering, Bangor University, Bangor, UK, 2014.

Adam Ahmad Sleiman, “Two terminal organic nonvolatile memory devices”, Ph.D. Thesis, School of Electronic Engineering, Bangor University, Bangor, UK, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mabrook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fakher, S. et al. (2017). Organic Floating Gate Memory Structures. In: Dimitrakis, P. (eds) Charge-Trapping Non-Volatile Memories. Springer, Cham. https://doi.org/10.1007/978-3-319-48705-2_4

Download citation

Publish with us

Policies and ethics