Skip to main content

Materials and Device Reliability in SONOS Memories

  • Chapter
  • First Online:
Charge-Trapping Non-Volatile Memories

Abstract

Silicon Nitride based charge trap devices have been studied for more than four decades for applications in non-volatile memories. SONOS memories are a widely used class of non-volatile memories today. Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) stack as the non-volatile memory gate stack has been the focus since the 1990s. Several enhancements in SONOS layer materials have been invented to reduce the programming voltage and improve the reliability of the SONOS memory. This chapter will review the early years of SONOS and then highlight the various innovations that have enhanced SONOS memory performance, reliability and low cost of manufacture. Topics that will be covered include various improvements in the ONO stack such as Band gap engineering, High K-Metal Gate for SONOS, SONOS FinFETs and embedded SONOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.C. Tombs et al., Proc. IEEE (Letters) 54, 87 (1966)

    Google Scholar 

  2. T.L. Chu et al., Solid-state Electron 10, 897 (1967)

    Article  Google Scholar 

  3. D. Frohman-Bentchkowsky, IEEE Spectr. 1190 (1969)

    Google Scholar 

  4. H.A.R. Weagner et al., IEDM (1967)

    Google Scholar 

  5. D. Frohman-Bentchkowsky, Proc. IEEE 58, 1207 (1970)

    Article  Google Scholar 

  6. D. Frohman- Bentchkowsy, M. Lenzlinger, J. Appl. Phys. 40, 3307 (1969)

    Google Scholar 

  7. H.C. Pao, M. O’Connell, Appl. Phys. Lett. 12, 260 (1968)

    Article  Google Scholar 

  8. J.T. Wallmark, J.H. Scott. Jr, RCA Rev. 30, 366 (1969)

    Google Scholar 

  9. E.C. Ross, M.T. Duffy, A.M. Goodman, IEDM 46 (1969)

    Google Scholar 

  10. A.K. Agarwal, M.H. White, New results on electron injection, hole injection, and trapping in MONOS nonvolatile memory devices. IEEE Trans. Electr. Devices 32(5), 941 (1985)

    Google Scholar 

  11. Y. Wang, M. White, An analytical model for SONOS memory devices in the excess electron state. Semi Dev. Res. Symp. 156 (2003)

    Google Scholar 

  12. S.Y. Wang et al., Reliability and processing effects of band gap engineered SONOS (BE-SONOS) flash memory, in IRPS, 2007, p. 171

    Google Scholar 

  13. A. Furnemont et al., Physical modeling of retention in localized trapping nitride memory devices, in IEDM Tech. Dig., 2006, p. 1

    Google Scholar 

  14. M. White et al., A low voltage SONOS nonvolatile memory technology. IEEE Trans. Compon. Packag. Manuf. Part A, 20, 190 (1997)

    Google Scholar 

  15. C.T. Swift et al., An embedded 90 nm SONOS nonvolatile memory utilizing hot electron programming and uniform tunnel erase, in IEDM Tech. Dig., 2002, p. 927

    Google Scholar 

  16. J.S. Meena et al., Overview of nonvolatile memory technologies. Nanoscale Lett. 526 (2014)

    Google Scholar 

  17. V.J. Kapooer et al., Charge storage and distribution in the nitride layer of metal-nitride-oxide semiconductor structures. J. Appl. Phys. 52, 311 (1981)

    Google Scholar 

  18. H.T. Lue et al., A transient analysis method to characterize the trap vertical location in nitride trapping devices. IEEE Electron Dev. Lett. 25, 816 (2004)

    Google Scholar 

  19. K. Honda et al., Visualization using the scanning nonlinear dielectric microscopy of electrons and holes localized in the thin gate film of metal–oxide–nitride–oxide–semiconductor type flash memory, in IEEE NVMTS, 2006, p. 4

    Google Scholar 

  20. Y.J. Seo et al., Study of hole traps in the oxide–nitride–oxide structure of the SONOS flash memory. Journ. Kor. Phys. Soc. 53, 3302 (2008)

    Google Scholar 

  21. W.S. Kim et al., The origin of traps and the effect of nitrogen plasma in oxide-nitride-oxide structures for non-volatile memories. Journ Kor. Phys. Soc. 57, 255 (2010)

    Google Scholar 

  22. T. Ishida et al., Characterization of charge traps in metal-oxide-nitride-oxide-semiconductor (MONOS) structures for embedded flash memories, in IEEE IRPS, 2006, p. 516

    Google Scholar 

  23. C.H. Lai et al., Very low voltage SiO2/HfON/HfAlO/TaN memory with fast speed and good retention, in Symposium on VLSI Technology, 2006, p. 44

    Google Scholar 

  24. A. Chin et al., Improved retention and cycling characteristics of MONOS memory using charge-trapping engineering, in IEEE Proceedings 16th IPFA (2009)

    Google Scholar 

  25. J. Buckley et al., In-depth investigation of Hf-based high-k dielectrics as storage layer of charge-trap NVMs, in IEDM Tech. Dig., 2006, p.1

    Google Scholar 

  26. Y.N. Tan et al., High-K HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation, in IEDM Tech. Dig., 2004, p. 889

    Google Scholar 

  27. S. Mahapatra et al., CHISEL flash EEPROM Part I—performance and scaling. IEEE Trans. Electron. Dev. 49, 1296 (2002)

    Google Scholar 

  28. K.T. Chang et al., A new SONOS memory using source-side injection for programming. IEEE Electron. Dev. Lett. (1998) 253

    Google Scholar 

  29. K. Sridhar et al., Controlling injected electron and hole profiles for better reliability of split gate SONOS, in Proceedings of 12th IPFA, 2005, p. 190

    Google Scholar 

  30. B. Eitan et al., NROM: a novel localized trapping, 2-Bit nonvolatile memory cell. IEEE Electron Dev. Lett. 21, 543 (2000)

    Google Scholar 

  31. Y. Kawashima et al., Investigation of the data retention mechanism and modeling for the high reliability embedded split-gate MONOS flash memory, in IEEE IRPS (2015), p. MY.6.1

    Google Scholar 

  32. S. Tehrani, J. Pak, The Outlook for Charge-Trapping Flash Memory (EE Times-Asia, 2013)

    Google Scholar 

  33. S. Tehrani et al., Advancement in charge-trap flash memory technology, in IEEE IMW (2013), p. 9

    Google Scholar 

  34. L.-J. Liu et al., Study of the disturb in SONOS memory, in IEEE ICSICT (2012), p.1

    Google Scholar 

  35. Bharat Kumar et al., Investigation of drain disturb in SONOS flash EEPROM. IEEE Trans. Electron. Dev, 54, 98 (2007)

    Google Scholar 

  36. M. Terai et al.‚ Trapped-hole-enhanced erase-level shift by FN-stress disturb in Sub-90-nm-node embedded SONOS memory. IEEE Trans. Electron. Dev. 55, 1464 (2008)

    Google Scholar 

  37. G. Kathawala et al.‚ Novel application of Monte Carlo simulations for improved understanding of transient programming in SONOS devices. IEEE NVSMW 2007, p. 106

    Google Scholar 

  38. J. Bu, M.H. White, Retention reliability enhanced SONOS NVSM with scaled programming voltage, in Proceedings of IEEE Aerospace Conference, 2002, p. 5–2383

    Google Scholar 

  39. J. Wu et al., Retention reliability improvement of SONOS non-volatile memory with N 2 O oxidation tunnel oxide, in IEEE IRW, 2006, p. 209

    Google Scholar 

  40. S. Y. Wang et al., A high-endurance (>100 k) BE-SONOS NAND flash with a robust nitrided tunnel oxide/Si interface, in IEEE IRPS, 2010, p. 951

    Google Scholar 

  41. B. De Salvo et al., A new extrapolation law for data-retention time-to-failure of nonvolatile memories. IEEE Electron Dev. Lett. 20, 197 (1999)

    Google Scholar 

  42. E. Vianello et al., Impact of the charge transport in the conduction band on the retention of Si–Nitride based memories, in IEEE ESSDERC, 2008, p. 107

    Google Scholar 

  43. K.A. Nasyrov et al., Charge transport mechanism in metal–nitride–oxide–silicon structure. IEEE Electron Dev. Lett 23, 336 (2002)

    Article  Google Scholar 

  44. H.T. Lue et al., BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability, in IEDM Tech. Dig., 2005, p. 547

    Google Scholar 

  45. T.S. Chen et al., Performance improvement of SONOS memory by Bandgap engineering of charge-trapping layer. IEEE Electron Dev. Lett, 25, 205 (2004)

    Google Scholar 

  46. C.H. Lee et al., A novel SONOS structure of Si02/SiN/A1203 with TaN metal gate for multi-giga bit flash memories, in IEDM Tech. Dig., 2003, p. 613

    Google Scholar 

  47. C.H. Lee et al., Charge trapping memory cell of TANOS (Si-Oxide-SiN-Al2O3-TaN) structure compatible to conventional NAND flash memory, in IEEE NVSMW, 2006, p. 54

    Google Scholar 

  48. Y. Shin et al., Highly manufacturable 32Gbit multi level NAND flash memory with 0.098 μm2 cell size using TANOS (Si–Oxide–Nitride–TaN) cell technology, in IEDM Tech. Dig., 2006, p. 1

    Google Scholar 

  49. M.V. Duuren et al., Pushing the scaling limits of embedded non-volatile memories with high-K materials, in IEEE ICICDT, 2006, p. 1

    Google Scholar 

  50. R. Van Schaijk et al., A novel SONOS memory with HfSiON/Si3N4/HfSiON stack for improved retention, in IEEE NVSMW, 2006, p. 51

    Google Scholar 

  51. G. Molas et al. Layered HfSiON-based tunnel stacks for voltage reduction and improved reliability in TANOS memories, in International symposium VLSI technology systems and applications, 2010, p. 56

    Google Scholar 

  52. G. Zhang, W.J. Yoo, Novel HfAlO charge trapping layer in SONOS type flash memory for multi-bit per cell operation, in IEEE ICSICT 2006, p. 781

    Google Scholar 

  53. C. Zhao et al., Review on non-volatile memory with High K Dielectrics: flash for generation beyond 32 nm. Materials, 7, 5117 (2014)

    Google Scholar 

  54. M. Specht et al., Retention time charge trapping memories using Al2O3 dielectrics, in European Solid-State Device Research, 2003. ESSDERC ‘03, 2003, p. 155

    Google Scholar 

  55. S.C. Lai et al., Highly reliable MA BESONOS using SiO2 buffer layer, in Symposium on VLSI Technology, 2008, p. 58

    Google Scholar 

  56. J.G. Park et al., Improvement of reliability characteristics using the N2 implantation in SOHOS flash memory, in Nanotechnology Materials and Devices Conference, 2010, p. 364

    Google Scholar 

  57. J.K. Park et al., Lanthanum-oxide-doped nitride charge-trap layer for a TANOS memory device. IEEE Trans. Electron. Dev, 58, 3314 (2011)

    Google Scholar 

  58. Y.H. Wu et al., Nonvolatile memory with nitrogen-stabilized cubic-phase ZrO2 as charge-trapping layer. IEEE Electron. Dev. Lett. 31, 1008 (2010)

    Google Scholar 

  59. R. Muralidhar et al., A 6V embedded 90 nm silicon nanocrystal nonvolatile memory, in IEDM 2003, p. 601

    Google Scholar 

  60. B. De Salvo et al., Performance and reliability features of advanced nonvolatile memories based on discrete traps (silicon nanocrystals, SONOS), in IEEE Transaction on Device and Materials Reliability, 4, 377 (2004)

    Google Scholar 

  61. T.Y. Chiang et al., Characteristics of SONOS-type flash memory with in situ embedded silicon nanocrystals. IEEE Trans. Electron Dev. 57, 1895 (2010)

    Google Scholar 

  62. T.H. Hsu et al., A high-speed BE-SONOS NAND flash utilizing the field-enhancement effect of FinFET, in IEDM, 2007, p. 913

    Google Scholar 

  63. J.J. Lee et al., Retention reliability of FINFET SONOS device, in IEEE IRPS, 2006, p. 530

    Google Scholar 

  64. S.H. Lee et al., Improved post-cycling characteristic of FinFET NAND Flash, in IEDM, 2006, p. 1

    Google Scholar 

  65. J. Hwang et al., 20 nm gate bulk-FinFET SONOS flash, in IEDM, 2005, p. 154

    Google Scholar 

  66. H.T. Lue et al., A critical review of charge trapping NAND flash devices, in ICSICT, 2008, p. 807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaswamy Ramkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ramkumar, K. (2017). Materials and Device Reliability in SONOS Memories. In: Dimitrakis, P. (eds) Charge-Trapping Non-Volatile Memories. Springer, Cham. https://doi.org/10.1007/978-3-319-48705-2_1

Download citation

Publish with us

Policies and ethics