Skip to main content

Enzyme-Based Strategies to Generate Site-Specifically Conjugated Antibody Drug Conjugates

  • Chapter
  • First Online:
Next Generation Antibody Drug Conjugates (ADCs) and Immunotoxins

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Antibody Drug Conjugates (ADCs) exploit the specificity of monoclonal antibodies for the targeting of highly potent small molecular weight toxins to cancer cells in order to selectively effect their destruction. It is expected that due to the targeting of ADCs to the tumor, these drugs will be associated with less side effects and a higher therapeutic index than standard chemotherapy. However, so far this promise of ADCs has only poorly translated into the clinic. Despite the fact that ADCs for cancer therapy have been developed for many decades, the field has experienced a number of failures of ADCs in clinical development, due to an unfavorable clinical benefit to safety relationship. The first ADC, Mylotarg®, an anti-CD33 ADC, approved for treatment of acute myeloid leukemia (AML) eventually had to be taken off the market 10 years post approval. To date only two ADCs, the anti-CD30 ADC brentuximab vedotin (Adcetris®) and the anti-HER-2 ADC trastuzumab-emtansine (Kadcyla®), are approved for cancer therapy. In fact, Kadcyla® is only approved as a second-line therapy in breast cancer due to a limited clinical benefit in comparison to standard therapy as a first-line therapy. There is an increasing body of evidence that first-generation ADCs, including the two marketed ADC products, that are generated by standard chemical conjugation, are associated with liabilities connected to the conjugation technologies employed, which have a negative impact on the therapeutic index and efficacy of these ADCs. Here, we describe novel conjugation approaches, with a specific focus on enzymatic conjugation technologies that aim at overcoming the limitations of first-generation ADCs, namely the heterogeneity of chemically conjugated ADCs and insufficient linker stability. While site-specific conjugation can also be achieved using novel chemical linker approaches, and while it is also possible to employ improved linkers in chemical conjugation technologies, there are additional compelling arguments for site-specific enzymatic conjugation of toxin payloads to antibodies. New developments and data related to the preclinical evaluation of such next-generation ADCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, Jones LC, Rabuka D (2013a) Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 24:846–851

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, van der Weijden J, Sletten EM, Rabuka D, Bertozzi CR (2013b) A Pictet-Spengler ligation for protein chemical modification. Proc Natl Acad Sci U S A 110:46–51

    Article  PubMed  Google Scholar 

  • Alewine C, Hassan R, Pastan I (2015) Advances in anticancer immunotoxin therapy. Oncologist 20:1–10

    Article  Google Scholar 

  • Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, Senter PD (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19:759–765

    Article  CAS  PubMed  Google Scholar 

  • Antos JM, Miller GM, Grotenbreg GM, Ploegh HL (2008) Lipid modification of proteins through sortase-catalyzed transpeptidation. J Am Chem Soc 130:16338–16343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antos JM, Chew GL, Guimaraes CP, Yoder NC, Grotenbreg GM, Popp MWL, Ploegh HL (2009a) Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity. J Am Chem Soc 131:10800–10801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antos JM, Popp MWL, Ernst R, Chew GL, Spooner E, Ploegh HL (2009b) A straight path to circular proteins. J Biol Chem 284:16028–16036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranko AS, Wlodawer A, Iwai H (2014) Nature’s recipe for splitting inteins. Protein Eng Des Sel 27:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerli RR, Hell T, Merkel AS, Grawunder U (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10:e0131177

    Article  PubMed  PubMed Central  Google Scholar 

  • Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A, Loomis KH, Waybright TJ, Qasba PK (2009) Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 20:1228–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant P, Pabst M, Badescu G, Bird M, McDowell W, Jamieson E, Swierkosz J, Jurlewicz K, Tommasi R, Henseleit K, Sheng X, Camper N, Manin A, Kozakowska K, Peciak K, Laurine E, Grygorash R, Kyle A, Morris D, Parekh V, Abhilash A, Choi JW, Edwards J, Frigerio M, Baker MP, Godwin A (2015) In vitro and in vivo evaluation of cysteine rebridged trastuzumab—MMAE antibody drug conjugates with defined drug-to-antibody ratios. Mol Pharm 12:1872–1187

    Article  CAS  PubMed  Google Scholar 

  • Dennler P, Schibli R, Fischer E (2013) Enzymatic antibody modification by bacterial transglutaminase. Methods Mol Biol 1045:205–215

    Article  PubMed  Google Scholar 

  • Dorywalska M, Strop P, Melton-Witt J, Hasa-Moreno A, Farias SE, Casas MG, Delaria K, Lui V, Poulsen K, Sutton J, Bolton G, Zhou D, Moine L, Dushin R, Tran TT, Liu SH, Rickert M, Foletti D, Shelton DL, Pons J, Rajpal A (2015) Site-dependent degradation of a non-cleavable auristatin-based linker-payload in rodent plasma and its effect on ADC efficacy. PLoS One 10:e0132282

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake PM, Rabuka D (2015) An emerging playbook for antibody–drug conjugates: lessons from the laboratory and clinic suggest a strategy for improving efficacy and safety. Curr Opin Chem Biol 28:174–180

    Article  CAS  PubMed  Google Scholar 

  • Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, de Hart GW, Garofalo AW, Holder P, Jones LC, Kudirka R, McFarland J, Zmolek W, Rabuka D (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25:1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducry L, Stump B (2010) Antibody-drug conjugates: linking cytotoxoc payloads to monoclonal antibodies. Bioconjug Chem 21:5–13

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K (2013) Transglutaminase regulation of cell function. Physiol Rev 94:383–417

    Article  Google Scholar 

  • Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, Law CL, Doronina SO, Siegall CB, Senter PD, Wahl AF (2003) cAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Grünewald J, Klock HE, Cellitti SE, Bursulaya B, McMullan D, Jones DH, Chiu HP, Wang X, Patterson P, Zhou H, Vance J, Nigoghossian E, Tong H, Daniel D, Mallet W, Ou W, Uno T, Brock A, Lesley SA, Geierstanger BH (2015) Efficient preparation of site­specific antibody­drug conjugates using phosphopantetheinyl transferases. Bioconjug Chem 26:2554–2562

    Article  PubMed  Google Scholar 

  • Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Smith SW, Ghone S, Tomczuk B (2015) Current ADC linker chemistry. Pharm Res 32:3526–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeger S, Zimmermann K, Blanc A, Grünberg J, Honer M, Hunziker P, Struthers H, Schibli R (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl 49:9995–9997

    Article  CAS  PubMed  Google Scholar 

  • Kornberger P, Skerra A (2014) Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin. mAbs 6:354–366

    Article  PubMed  Google Scholar 

  • Levary DA, Parthasarathy R, Boder ET, Ackerman ME (2011) Protein-protein fusion catalyzed by sortase A. PLoS One 6:e18342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lhospice F, Breǵeon D, Belmant C, Dennler P, Chiotellis A, Fischer E, Gauthier L, Boed̈ec A, Rispaud H, Savard-Chambard S, Represa A, Schneider N, Paturel C, Sapet M, Delcambre C, Ingoure S, Viaud N, Bonnafous C, Schibli R, Romagne F (2015) Site-specific conjugation of monomethyl auristatin E to anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol Pharm 12:1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Liebscher S, Kornberger P, Fink G, Trost-Gross EM, Höss E, Skerra A, Bordusa F (2014) Derivatization of antibody Fab fragments: a designer enzyme for native protein modification. Chembiochem 15:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  • Madej MP, Coia G, Williams CC, Caine JM, Pearce LA, Attwood R, Bartone NA, Dolezal O, Nisbet RM, Nuttall SD, Adams TE (2012) Engineering of an anti-epidermal growth factor receptor antibody to single chain format and labeling by sortase A-mediated protein ligation. Biotechnol Bioeng 109:1461–1470

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Hart SA, Schink A, Pollok BA (2004) Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc 126:2670–2671

    Article  CAS  PubMed  Google Scholar 

  • Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    Article  CAS  PubMed  Google Scholar 

  • Mazor R, Onda M, Park D, Addissie S, Xiang L, Zhang J, Hassan R, Pastan I (2016) Dual B- and T-cell de-immunization of recombinant immunotoxin targeting mesothelin with high cytotoxic activity. Oncotarget 7:29916–29926

    PubMed  PubMed Central  Google Scholar 

  • McCluskey AJ, Collier RJ (2013) Receptor-directed chimeric toxins created by sortase-mediated protein fusion. Mol Cancer Ther 12:2273–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCombs JR, Owen SC (2015) Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J 17:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills KV, Johnson MA, Perler FB (2014) Protein splicing: how inteins sscape from precursor proteins. J Biol Chem 289:14498–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möhlmann S, Mahlert C, Greven S, Scholz P, Harrenga A (2011a) In vitro sortagging of an antibody fab fragment: overcoming unproductive reactions of sortase with water and lysine side chains. Chembiochem 12:1774–1780

    Article  PubMed  Google Scholar 

  • Möhlmann S, Bringmann P, Greven S, Harrenga A (2011b) Site-specific modification of ED-B-targeting antibody using intein-fusion technology. BMC Biotechnol 11:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Naito K, Takeshita A, Shigeno A, Nakamura S, Fujisama S, Shinjo K, Yoshida H, Ohnishi K, Mori M, Terakawa S, Ohno R (2000) Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 14:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Palsuledesai CC, Distefano MD (2015) Protein prenylation: enzymes, therapeutics, and biotechnology applications. ACS Chem Biol 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR (2014) Site-specific antibody drug conjugates for cancer therapy. mAbs 6:34–45

    Article  PubMed  Google Scholar 

  • Parthasarathy R, Subramanian S, Boder ET (2007) Sortase A as a novel molecular “stapler” for sequence-specific protein conjugation. Bioconjug Chem 18:469–476

    Article  CAS  PubMed  Google Scholar 

  • Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, Borzilleri RM (2014) Antibody-drug conjugates: current status and future direction. Drug Disc Today 19:869–881

    Article  CAS  Google Scholar 

  • Phillips GDL, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA, Lambert JM, Chari RVJ, Lutz RJ, Wong WLT, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  Google Scholar 

  • Ramakrishnan B, Qasba PK (2002) Structure-based design of β1,4-galactosyltransferase I (β4Gal-T1) with equally efficient N-acetylgalactos-aminyltransferase activity. J Biol Chem 277:20833–20839

    Article  CAS  PubMed  Google Scholar 

  • Saber H, Leighton JK (2015) An FDA oncology analysis of antibody–drug conjugates. Regul Toxicol Pharmacol 71:444–452

    Article  CAS  PubMed  Google Scholar 

  • Schumacher D, Hackenberger CPR, Leonhardt H, Helma J (2016) Current status: site-specific antibody drug conjugates. J Clin Immunol 36(Suppl 1):S100–S107

    Article  Google Scholar 

  • Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461

    Article  CAS  PubMed  Google Scholar 

  • Sochaj AM, Swiderska KW, Otlewski J (2015) Current methods for the synthesis of homogeneous antibody–drug conjugates. Biotechnol Adv 33:775–784

    Article  CAS  PubMed  Google Scholar 

  • Spirig T, Weiner EM, Clubb RT (2011) Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82:1044–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, Ho WH, Farias S, Casas MG, Abdiche Y, Zhou D, Chandrasekaran R, Samain C, Loo C, Rossi A, Rickert M, Krimm S, Wong T, Chin SM, Yu J, Dilley J, Chaparro-Riggers J, Filzen GF, O’Donnell CF, Wang F, Myers JS, Pons J, Shelton DL, Rajpal A (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20:161–167

    Article  CAS  PubMed  Google Scholar 

  • Swee LK, Guimaraes CP, Sehrawat S, Spooner E, Inmaculada Barrasa M, Ploegh HL (2013) Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci U S A 110:1428–1433

    Article  PubMed  PubMed Central  Google Scholar 

  • Ta HT, Prabhu S, Leitner E, Jia F, von Elverfeldt D, Jackson KE, Heidt T, Nair AKN, Pearce H, von zur Muhlen C, Wang X, Peter K, Hagemeyer CE (2011) Enzymatic single-chain antibody tagging a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ Res 109:365–373

    Article  CAS  PubMed  Google Scholar 

  • Ton-That H, Mazmanian SK, Faull KF, Schneewind O (2000) Anchoring of surface proteins to the cell wall of Staphylococcus aureus. J Biol Chem 275:9876–9881

    Article  CAS  PubMed  Google Scholar 

  • Tsukiji S, Nagamune T (2009) Sortase-mediated ligation: a gift from Gram-positive bacteria to protein engineering. Chembiochem 10:787–798

    Article  CAS  PubMed  Google Scholar 

  • Volkmann G, Liu X-Q (2009) Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein. PLoS One 4(12):e8381

    Google Scholar 

  • Wei C, Zhang G, Clark T, Barletta F, Turney LN, Rago B, Hansel S, Han X (2016) Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal Chem 88:4979–4986

    Article  CAS  PubMed  Google Scholar 

  • Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289:14512–14519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Stefano JE, Manning C, Kyazike J, Chen B, Gianolio DA, Park A, Busch M, Bird J, Zheng X, Simonds-Mannes H, Kim J, Gregory RC, Miller RJ, Brondyk WH, Dhal PK, Pan CQ (2014) Site-specific antibody − drug conjugation through glycoengineering. Bioconjug Chem 25:510–520

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Ramakrishnan B, Li J, Wang Y, Feng Y, Prabakaran P, Colantonio S, Dyba MA, Qasba PK, Dimitrov DS (2014) Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. mAbs 6:1190–1200

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Grawunder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beerli, R.R., Grawunder, U. (2017). Enzyme-Based Strategies to Generate Site-Specifically Conjugated Antibody Drug Conjugates. In: Grawunder, U., Barth, S. (eds) Next Generation Antibody Drug Conjugates (ADCs) and Immunotoxins. Milestones in Drug Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-46877-8_5

Download citation

Publish with us

Policies and ethics