A Novel Tiny Object Recognition Algorithm Based on Unit Statistical Curvature Feature

  • Yimei KangEmail author
  • Xiang Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9909)


To recognize tiny objects whose sizes are in the range of 15\(\times \)15 to 40\(\times \)40 pixels, a novel image feature descriptor, unit statistical curvature feature (USCF), is proposed based on the statistics of unit curvature distribution. USCF can represent the local general invariant features of the image texture. Due to the curvature features are independent of image sizes, USCF algorithm had high recognition rate for object images in any size including tiny object images. USCF is invariant to rotation and linear illumination variation, and is partially invariant to viewpoint variation. Experimental results showed that the recognition rate of USCF algorithm was the highest for tiny object recognition compared to other nine typical object recognition algorithms under complex test conditions with simultaneous rotation, illumination, viewpoint variation and background interference.


Object recognition Tiny object Feature descriptor Unit Statistical Curvature Feature 


  1. 1.
    Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)CrossRefGoogle Scholar
  2. 2.
    Nguyen, D.T.: A novel chamfer template matching method using variational mean field. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2425–2432. IEEE (2014)Google Scholar
  3. 3.
    Satpathy, A., Jiang, X., Eng, H.L.: LBP-based edge-texture features for object recognition. IEEE Trans. Image Process. 23(5), 1953–1964 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Xu, Y., Quan, Y., Zhang, Z., Ji, H., Fermüller, C., Nishigaki, M., Dementhon, D.: Contour-based recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3402–3409. IEEE (2012)Google Scholar
  5. 5.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  7. 7.
    Rani, R., Grewal, S.K., Panwar, K.: Object recognition: performance evaluation using SIFT and SURF. Int. J. Comput. Appl. 75(3), 39–47 (2013)Google Scholar
  8. 8.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)Google Scholar
  9. 9.
    Hauagge, D.C., Snavely, N.: Image matching using local symmetry features. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 206–213. IEEE (2012)Google Scholar
  10. 10.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theor. 8(2), 179–187 (1962)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fritz, G., Paletta, L., Bischof, H.: Object recognition using local information content. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 15–18. IEEE (2004)Google Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  13. 13.
    Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of GIST descriptors for web-scale image search. In: Proceedings of the ACM International Conference on Image and Video Retrieval, p. 19. ACM (2009)Google Scholar
  14. 14.
    Ebert, S., Larlus, D., Schiele, B.: Extracting structures in image collections for object recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 720–733. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15549-9_52 CrossRefGoogle Scholar
  15. 15.
    Fasel, B., Gatica-Perez, D.: Rotation-invariant neoperceptron. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 336–339. IEEE (2006)Google Scholar
  16. 16.
    Pan, H., Xia, L.Z.: Efficient object recognition using boundary representation and wavelet neural network. IEEE Trans. Neural Netw. 19(12), 2132–2149 (2008)CrossRefGoogle Scholar
  17. 17.
    Wang, B., Bai, X., Wang, X., Liu, W., Tu, Z.: Object recognition using junctions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision – ECCV 2010. LNCS, vol. 6315, pp. 15–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10584-0_22 Google Scholar
  19. 19.
    Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20). Technical report, Technical report CUCS-005-96 (1996)Google Scholar
  20. 20.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.: The amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)CrossRefGoogle Scholar
  21. 21.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-409. IEEE (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.College of SoftwareBeihang UniversityBeijingChina

Personalised recommendations