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Abstract. To recognize tiny objects whose sizes are in the range of
15×15 to 40×40 pixels, a novel image feature descriptor, unit statistical
curvature feature (USCF), is proposed based on the statistics of unit
curvature distribution. USCF can represent the local general invariant
features of the image texture. Due to the curvature features are inde-
pendent of image sizes, USCF algorithm had high recognition rate for
object images in any size including tiny object images. USCF is invariant
to rotation and linear illumination variation, and is partially invariant
to viewpoint variation. Experimental results showed that the recogni-
tion rate of USCF algorithm was the highest for tiny object recognition
compared to other nine typical object recognition algorithms under com-
plex test conditions with simultaneous rotation, illumination, viewpoint
variation and background interference.

Keywords: Object recognition · Tiny object · Feature descriptor · Unit
Statistical Curvature Feature

1 Introduction

Recognition of tiny image objects taken by digital cameras is a key subject in
machine vision. Recognizing an object accurately and quickly when it is very
small and in a distance provides more time to take appropriate actions for a
system that relies on machine vision, such as a robot, an Unmanned Aerial
Vehicle (UAV), etc. However, automatic recognition gets more and more difficult
when the objects are getting smaller, due to the tiny objects have very few pixels
and texture information.

There are limited studies focused on this subject. Torralba et al. [1] imple-
mented tiny objects classification whose sizes are 32×32 color pixels by using
the nearest neighbor matching schemes and image indexing techniques. They
showed that the 32×32 color pixel tiny images already seem to contain most of
the relevant information needed to support reliable recognition. However, the
approach is only used to classify objects but not to distinguish a tiny object
from other objects in an image.

Multiple approaches can be used to recognize a big image object whose size is
larger than 40×40 pixels by matching the image features, e.g. edge features [2–4],
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invariant features [5–10], statistical features [11–13], etc. Tiny object whose size
is smaller than 40×40 pixels has vague contours, and the algorithms based on
edge features cannot work on tiny object recognition.

Some recognition algorithms based on invariant features are commonly used
to recognize objects. SIFT [5] constructed feature descriptors based on histogram
of magnitude and direction of gradients to characterize an object. To improve
the calculation efficiency of SIFT, SURF [6] built feature descriptors based on
sum of Haar wavelet responses. Rani et al. [7] found that the number of key-
points detected by using SIFT is more than that of SURF through a set of
experiments. Rublee et al. prompted an efficient matching method called ORB
[8] by combining FAST keypoint detector and BRIEF descriptor. Hauagge et al.
proposed another kind of invariant feature based on local symmetry feature [9].

The above mentioned invariant feature descriptors are invariant to uniform
scaling and orientation variation. SIFT can precisely recognize the images by
matching the keypoints which are extremes in a set of three DoG (Different of
Gaussian) images. Similarly, SURF recognize the objects by matching keypoints
derived from blob structure and ORB uses descriptor derived from corner key-
points in images. However, there are often no suitable keypoints when the image
size is very small, such as in the range from 15×15 to 40×40 pixels.

Hu proposed a geometric feature descriptor based on invariant moments [10].
Hu’s method is suitable for object recognition by using object shape. There is
little information to construct the boundaries for tiny object images. Therefore,
Hu’s method cannot be used directly to recognize tiny objects. However, the
invariant features of Hu’s method can represent the tiny objects and can be
used to recognize tiny objects.

Statistical features, such as histogram and entropy of an image, can also be
used to characterize small objects because they do not rely on the size of the
images. However, statistical features are too general and have no position infor-
mation, therefore, they can hardly be applied to object recognition. In contrary
to global entropy, unit entropy has information of position, and it can be used to
recognize small objects. Fritz et al. [11] used unit entropy to build an entropy-
based object model from discriminative local patterns for object representation
and recognition.

HoG [12] and GIST [13] algorithms are also based on statistical features. HoG
employs a histogram binning on the gradient orientation and extracts feature
vector with a grid of overlapping blocks. GIST divides an image into 4×4 grids
in which orientation histograms are extracted by using Gabor filters. When we
tried to apply existing recognition algorithms to an industrial application to
distinguish between tiny objects, unit entropy, HoG and GIST all performed
well. Unfortunately, they didn’t work when the object rotates.

Some nonlinear method based on machine learning can also be used to
recognize objects, e.g. the methods using k -nearest neighbor method and semi-
supervised learning [14], weight kernels over orientations [15], wavelet neural
network [16], two-layer neural network [17], and convolutional neural network
[18]. All these algorithms must train sample images before recognizing objects.
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In this paper, we proposed a novel image feature descriptor, unit statistical
curvature feature (USCF) of the grayscale surface of an image, to character-
ize tiny objects with 15×15 to 40×40 pixels. The recognition algorithm based
on USCF can recognize an object image in any size. Specifically, it had high
recognition rate and computation efficiency for tiny objects. USCF is completely
invariant to rotation and linear illumination variation. It is also partially invari-
ant to viewpoint variation and background interference. The USCF algorithm
is compared with other recognition algorithms including SIFT, SURF, ORB,
gray histogram, entropy, unit entropy, GIST, HoG and Hu’s moment invari-
ants (Hu’s MI) algorithms on the image datasets from ALOI-COL Database
[19], COIL-100 Database [20], ETH-80 Database [21], ETHZ another 53 Objects
Database and images from two videos, respectively. The experimental results
showed that USCF algorithm had best performance in tiny object recognition
under real complex environment against rotation, illumination, viewpoint vari-
ation and background interference.

2 The Principle of USCF Algorithm

An object image with less than 40×40 pixels often has vague contour and texture.
It is difficult for existing recognition algorithms to extract enough features from
such tiny objects. Hence, we tried a new way to recognize such tiny objects.

To recognize a tiny object, we need utilize the limited pixel information as
much as possible. Firstly, we build a three-dimensional coordinate system Oxyz
with the positions and gray values of pixels in an image I. Let (x, y, z) represent
a point in Oxyz, and let z be the gray value of pixel (x, y) in image I. Then we
construct a fitting function z = f(x, y) to convert the discrete points in Oxyz to
a curved surface, which outlines the gray value distribution tendency of image
I. Figure 1 shows two objects with their fitted curved surfaces under different
conditions. As shown in Fig. 1, different objects have different fitted curved sur-
faces while the shape of the fitted curved surfaces of an object is invariant to
object rotation and illumination variation. Therefore, object recognition can be
converted to compare the similarity of the fitted curved surfaces.

We constructed image features derived from the curvature to estimate the
similarity of the fitted curved surface. Curvature can describe the gray value
distribution of an image. Different from gradient, curvature is independent of
the object orientation and keeps more object details because second derivative
enhances the difference in details. Curvature is invariant to object rotation and
linear illumination variation since it only relies on the shape of curved sur-
face. Mean curvature reflects the local shape feature of the curved surface and
Gaussian curvature reflects the convexity and concavity feature of the curved
surface. Therefore, we combined Gaussian curvature K(x, y, z) and mean curva-
ture H(x, y, z) of each point (x, y, z) in the fitted curved surface of an object to
build the invariant feature of the object.

Map K(x, y, z) and H(x, y, z) to a two-dimensional coordinate OHK to gen-
erate the curvature feature space of the object as shown in Fig. 2. We used
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Fig. 1. Images (left) and fitted curved surfaces (right) of two objects in different
conditions. The object images and their parameters of illumination condition were
selected from ALOI-COL Database

coordinate (H,K) to represent a point in OHK . The curvature feature space
reflects the change of object image texture. If the color of a pixel is changed
slightly or not changed at all compared to surrounding pixels, the absolute val-
ues of K(x, y, z) and H(x, y, z) should both be low. Hence, the smoother the
image texture change is, the more points closer to the origin in OHK are. Con-
versely, when image texture is changed dramatically, more points are away from
the origin in OHK . In general, majority of points in OHK are close to origin
because smooth area is the majority in an image.

The curvature of a pixel is calculated based on pixels surrounding that pixel,
therefore it is sensitive to any changes of neighboring pixels. Any color variation
of pixels will have an impact on the value of the curvature. This means the whole
map in OHK of an object is also sensitive to gray value fluctuation of each pixel.
Hence, we partition the curvature feature space of an object to a number of
unit areas and use the statistics of curvature features in each unit to generate a
stable curvature feature matrix, i.e. unit statistical curvature feature. Then we
recognize tiny objects by matching the similarity of their USCF matrices.

Fig. 2. Mapping of each pixel in two object images to OHK using Gaussian curvature
and mean curvature as coordinates
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3 Proposed Algorithm

In this section, we present USCF recognition algorithm in details. Firstly, we
employ least square method to fit curved surfaces of object images. Secondly,
we calculate the Gaussian curvature and mean curvature of each pixel in object
images according to the fitted curved surfaces. Thirdly, we build the curvature
feature space in OHK , and partition it into a number of unit areas according to
the curvature distribution density. Then we count the number of points in each
unit area to construct the USCF matrix. Finally, the similarity of the objects is
obtained by matching the USCF matrices with Euclidean distance.

3.1 Generate Fitted Curved Surface

Least square method was used in this paper to generate the curved surface fitting
function. The reason to use least square method is that it can optimize fitting
function globally, and it is simple and converges quickly.

A function which consists of a number of primary functions and an unknown
coefficient set is usually used to describe an unknown curved surface. We use
polynomial functions as primary functions. Polynomial function can be differen-
tiated arbitrary times, and it is easy to calculate. For X axis, we chose P + 1
polynomial functions of x denoted as ϕr(x), where r = 0, 1, . . . , P . For Y axis,
we chose Q+1 polynomial functions of y denoted as φs(y), where s = 0, 1, . . . , Q.
Let ϕr(x)φs(y) be the primary functions. Denote {crs} as the unknown coeffi-
cient set. We can construct a function to represent an unknown curved surface
as follows:

f(x, y) =
Q∑

s=0

P∑

r=0

crsϕr(x)φs(y) (1)

Assume there are (m + 1) × (n + 1) points in Oxyz denoted as S =
{(xi, yj , zij)}, where i = 0, 1, . . . ,m and j = 0, 1, . . . , n. Fitted curved surface
is an approximation to the actual curved surface, therefore, there exist errors
between the calculated values from the fitted curved surface function and the
actual values. We define the error square as follows:

I =
n∑

j=0

m∑

i=0

[f(xi, yj) − zij ]
2

=
n∑

j=0

m∑

i=0

[
Q∑

s=0

P∑

r=0

crsϕr(x)φs(y) − zij

]2 (2)

If there is a coefficient set {c∗
rs} which minimize I, then f∗(x, y) based on {c∗

rs}
is the fitted curved surface of point set S by using least square fitting method.
In this situation, the following equation set must be true:

∂I

∂c∗
rs

= 2
n∑

j=0

m∑

i=0

[(f∗(xi, yj) − zij)ϕr(xi)φs(yj)]

= 0 (r = 0, 1, . . . , P ; s = 0, 1, . . . , Q)

(3)
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Denoting matrices
A = [ϕr(xi)](m+1)×(P+1)

B = [φs(yj)](n+1)×(Q+1)

Z = [zij ](m+1)×(n+1)

C = [c∗
ij ](P+1)×(Q+1)

(4)

We can obtain coefficient values by simplifying Eq. (3) and substituting the
matrices in Eq. (4) into the simplified equation.

C = (ATA)−1ATZB(BTB)−1 (5)

Correspondingly, we get the fitted curved surface f∗(x, y) of point set S.

3.2 Calculate Curvatures

Once the fitted curved surface is obtained, we can calculate the curvatures of the
curved surface. The fitted curved surface function can be rewritten as a vector
equation as follows: −→

t = (x, y, f∗(x, y)) (6)

Denoting f∗ as f∗(x, y), we can obtain the first order differential and the second
order differential about x and y of

−→
t as follows:

−→
t x = (1, 0, f∗

x ),
−→
t y = (0, 1, f∗

y )
−→
t xx = (0, 0, f∗

xx),
−→
t yy = (0, 0, f∗

yy),
−→
t xy = (0, 0, f∗

xy)

f∗
x =

∂f∗

∂x
, f∗

y =
∂f∗

∂y
, f∗

xx =
∂2f∗

∂x2
, f∗

yy =
∂2f∗

∂y2
, f∗

xy =
∂2f∗

∂x∂y

(7)

The values of H and K can be obtained through the fundamental form
definition of the curved surface as follows:

H =
LG − 2MF + NE

2(EG − F 2)

K =
LN − M2

EG − F 2

(8)

where E, F , G, L, M , N are parameters of the first fundamental form and the
second fundamental form of the curved surface and depend on Eq. (7).

E =
−→
t x · −→

t x, L =
−→
t xx ·

−→
t x × −→

t y

|−→t x × −→
t y|

F =
−→
t x · −→

t y, M =
−→
t xy ·

−→
t x × −→

t y

|−→t x × −→
t y|

G =
−→
t y · −→

t y, N =
−→
t yy ·

−→
t x × −→

t y

|−→t x × −→
t y|

(9)
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Replacing parameters in Eq. (8) with the parameters in Eq. (9) and combining
with Eq. (7), we can get H and K represented by the differential forms of f∗

shown as following:

H =
(1 + f∗2

y )f∗
xx + (1 + f∗2

x )f∗
yy − 2f∗

xf∗
y f∗

xy

2(1 + f∗2
x + f∗2

y )3/2

K =
f∗
xxf∗

yy − f∗2
xy

(1 + f∗2
x + f∗2

y )2

(10)

Using Eq. (10), we can get H and K of pixels in an image based on the fitted
function of the image.

3.3 Generate USCF Matrix

Once the curvature feature space in OHK is obtained, we partition the curvature
feature space into w × v units. Then we count the number of pixels in each unit
to generate the USCF matrix of an image.

The non-uniform distribution of pixels in OHK made it ineffective to uni-
formly partition the curvature distribution area. Points in OHK are distributed
widely but most points are close to the origin. Uniform partition of the curvature
feature space will result in non-uniform statistical features, e.g. a small number
of units will contain most points and most units are empty, which will result
in USCF matrices of different objects with no significant difference. Hence, we
partition the curvature feature space non-uniformly according to the density to
generate distinct USCF matrix with uniform statistical features.

Assume the curvature feature space of the image is Area, which is defined as
Area = {(H,K)|a < H < b, c < K < d}. We use delimiters Hi(i = 0, 1, . . . , w)
and Kj(j = 0, 1, . . . , v) to divide curvature feature space Area into w × v parts,
where Hi−1 < Hi, H0 = a, Hw = b and Kj−1 < Kj , K0 = c, Kv = d. We denote
a part as Areaji, which is defined as follows:

Areaji = {(H,K)|Hi−1 < H ≤ Hi,Kj−1 < K ≤ Kj} (11)

where i = 1, 2, . . . , w and j = 1, 2, . . . , v.
We use count(Areaji) to represent the number of pixels whose curvature

coordinates (H,K) are located in Areaji. Subsequently, we can define the USCF
matrix as follows:

D = [count(Areaji)]v×w (12)

The USCF matrix D reflects the curvature feature of a curved surface and we
use it to represent the image that the curved surface is fitted from.

The recognition ability of USCF algorithm depends on the partition of cur-
vature feature space. The more units curvature feature space is divided into, the
more detailed textures of an object are kept. Meanwhile, the recognition result
can be easily affected by image change because smaller unit partition weakens
general feature and is more sensitive to local feature variation. On the other side,
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the less parts curvature feature space is divided into, the better image change
immunity of USCF algorithm is, with the cost of reducing the recognition pre-
cision of USCF algorithm.

3.4 Compare the Similarity of USCF Matrices

We can obtain the similarity of template object image and candidate object
image by comparing the similarity of their USCF matrices. Let D[i, j] represent
the element located in the ith row and the jth column of matrix D. Let DT

and DM represent the USCF matrices of template object image and candidate
object image, respectively. We define dist as the metric to measure the similarity
between DT and DM by calculating their Euclidean distance. To normalize dist
so that all the values are in [0, 1], every element in the matrix will be divided
by the sum of all elements in the matrix.

dist =
v∑

i=1

w∑

j=1

(
DT [i, j]

/ v∑

p=1

w∑

q=1

DT [p, q] − DM [i, j]
/ v∑

p=1

w∑

q=1

DM [p, q]

)2

(13)

The value of dist represents the degree of similarity between template and can-
didate images. If DT = DM , the value of dist is equal to zero.

4 Experimental Results

All experiments in this section were carried out on a desktop PC with Intel(R)
Core(TM) i5-3470 CPU and 8 GB memory space. USCF algorithm was compared
with SIFT, SURF, ORB, gray histogram, entropy, unit entropy, GIST, HoG and
Hu’s moment invariants algorithms on ALOI-COL Database, COIL-100 Data-
base, ETH-80 Database and ETHZ another 53 Objects Database, respectively.
SIFT, SURF, ORB, HoG and Hu’s moment invariants algorithms were provided
by OpenCV 3.0. Other algorithms were programmed in C++ language.

Firstly, we compared the recognition rates of the ten test algorithms on the
images against one of the variables, i.e. rotation, illumination, or viewpoint vari-
ation. Then we compared USCF algorithm with the other nine algorithms under
a real complex environment with simultaneous variation of multiple variables
including rotation, illumination and viewpoint. These four types of experiments
were performed on images with sizes of 15×15, 20×20, 25×25, 30×30, 35×35 and
40×40 pixels, which were shrunk from the images in above image database by
using bicubic interpolation, respectively. Finally, we gave comparison of USCF
and other nine algorithms on images from two videos.

4.1 Parameter Selection

The selection of fitting parameters affects the results of USCF algorithm. To
avoid complex fitting function and get accurate curvature values, we calculated
the curvatures of every pixel by using the pixel with 8 surrounding pixels to fit
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each local small curved surface respectively. To simplify calculation, the primary
functions ϕr(x) and φs(y) were chosen as follows:

ϕr(x) = xr (r = 0, 1, 2)
φs(y) = ys (s = 0, 1, 2)

(14)

After performing a large number of experiments, we found that the distri-
bution area of K and H of most pixels are in the range of (-1000, 1000) and
partitioning the distribution area into 17 parts and 11 parts can get a good
recognition performance. In this situation, most units are not empty and con-
tain enough points to distinguish tiny objects and eliminate interference. The
demarcation points was generated as follows:

Hi = [(i − 5.5)/|i − 5.5|] × 10|i−5.5|−2.5 (i = 0, 1, . . . , 11)

Kj = [(j − 8.5)/|j − 8.5|] × 10|j−8.5|−5.5 (j = 0, 1, . . . , 17)
(15)

In the experiments, FlannBasedMatcher was used as the matching strategy
and at least 3 keypoints were required to correctly match the candidate and the
template images for SIFT, SURF and ORB algorithms. For entropy algorithm,
the absolute value of entropy difference between the template and candidate
object images was the matching criterion. For unit entropy and HoG algorithms,
we used 5×5 pixels as the size of each unit. We directly applied Hu’s moment
invariants of the whole image to match the object but did not extract the contour
of the object, and the cosine value of its feature vector was the metric to measure
the similarity of the template object image and candidate object image. For
unit entropy, GIST, HoG and gray histogram, we compared their feature vector
similarity by using Euclidean distance.

4.2 Robustness Against Rotation

COIL-100 Database was used to evaluate the anti-rotation performance of USCF
and other nine algorithms. The candidate object images were rotated clockwise
by 15, 60, 90 and 175◦, respectively. Some of the selected experimental images
are shown in Fig. 3.

As shown in Fig. 4, the recognition rate of USCF algorithm was from 70 %
up to 90 % with the size of the objects from 15×15 to 40×40 pixels. USCF is
robust to rotation because USCF is based on curvature, which is independent
of the object orientation, and USCF non-uniformly partitions the curvature dis-
tribution map according to the curvature distribution density but not directly
partitions the original images. The recognition rate of Hu’s moment invariants
was from 80 % to 90 %. The performance of USCF algorithm was as good as
that of Hu’s moment invariants algorithm when the size of the object was larger
than 35×35 pixels.
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Fig. 3. Examples of selected experi-
mental images. From left to right, the
rotation angles of the objects are 0, 15,
60, 90 and 175◦, respectively

Fig. 4. Anti-rotation experimental
results of USCF and other nine algo-
rithms on the test images with different
sizes

Fig. 5. Examples of selected experimental
images from ALOI-COL Database. From
left to right, the illumination conditions are
i110, i140, i170, i210 and i250, respectively

Entropy and gray histogram had
worse performance than USCF and
Hu’s moment invariants but had better
performance than other algorithms,
because they are based on general sta-
tistical feature of the images which
is insensitive to image rotation. Unit
entropy, HoG and GIST performed
poorly because they directly partition
the original images. SIFT, SURF and
ORB are robust to rotation, but they cannot obtain enough keypoints for tiny
object recognition. The best recognition rate of SURF was only 10 % in the
experiments due to its method used to detect keypoints. SIFT and ORB had
better performance than SURF. However, the recognition rates for those algo-
rithms increased as the object sizes increased.

4.3 Robustness Against Illumination Variation

ALOI-COL Database was used to evaluate the robustness against illumination
variation of the algorithms. We used the object images in the dataset illuminated
under condition i250 as template object image and the object images illuminated
under conditions i110, i140, i170 and i210 as candidate object images, respec-
tively. Some of the selected test images are shown in Fig. 5.

As shown in Fig. 6, unit entropy, HoG and GIST algorithm recognized tiny
object very well under varying illumination because their local statistical features
are insensitive to illumination change. The recognition rate of the three algo-
rithms were 100 % almost in all cases except it was 80 % for unit entropy when
the object size was 15×15 pixels. USCF algorithm performed better than other
six algorithms because USCF is invariant to linear illumination change. When
the object size became 40×40 pixels, the recognition rate of USCF algorithm
was 100 %. Gray histogram, entropy and Hu’s moment invariants algorithms are
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Fig. 6. Experimental results of USCF and other nine algorithms under different illu-
mination conditions for different sizes of the images

based on whole gray values which change obviously with illumination varying.
Their recognition rates were worse than those of SIFT and ORB. SIFT, SURF
and ORB are also invariant to linear illumination change. Their poor perfor-
mance is mainly due to their limitation to tiny object and the contrast change
produced by non-uniform illumination change. However, the recognition rates
increased with the object sizes increased. The best recognition rate of SURF
was only 20 % while those of SIFT and ORB were 90 %.

4.4 Robustness Against Slight Camera Viewpoint Variation

Fig. 7. Examples of the selected test
images from COIL-100 Database. From left
to right, the view of camera are 0, 5, 10, 15
and 20◦ respectively

The COIL-100 Database was used to
evaluate the performance of the ten
test algorithms under varying view-
point. The images with the view of
0 degree were used as the template
images while the images with views
of 5, 10, 15 and 20◦ were candi-
date images. Some of the selected test
images are shown in Fig. 7.

As shown in Fig. 8, the algorithms
based on local statistical information,
including HoG, GIST, unit entropy,
and USCF, performed much better
than other algorithms. Their recognition rates were close to 100 % when view-
point change was no more than 10◦, while the performance reduced with the
increasing of viewpoint change. This indicates that HoG, GIST, unit entropy
and USCF algorithms are partially invariant to viewpoint variation. Curvature
is derived from calculating second derivative of the fitted curved surface, which
keeps more image details and is more sensitive to non-uniform change of local
gray value than gradient, energy spectra and entropy. Therefore, the recognition
rates of USCF were close to those of HoG, GIST, and unit entropy algorithms
but lower than them.
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Fig. 8. Experimental results of USCF and other nine algorithms under different view-
ports for different sizes of images

Slight viewpoint changes have relatively little impact on statistical features.
As shown in Fig. 8, the best recognition rates of gray histogram and entropy
algorithms were 84 % when the camera view changed by 5◦. However, entropy
algorithm performed worse than gray histogram. The recognition rates of Hu’s
moment invariants algorithm were from 50 % down to about 25 % with the view-
point varied from 5◦ to 20◦. The results shows that Hu’s moment invariants
algorithm is sensitive to viewpoint variation, because Hu’s moment invariants
are based on the image centroid which shift as viewpoint changes. ORB per-
formed much better than SIFT, SURF algorithms. The best recognition rate of
ORB reached 80 % when the size of the object was 40×40 pixels and the view-
point changed by 10◦. The best performance of SURF was only 12 % when the
size of the object was 40×40 pixels and the viewpoint changed by 5◦.

4.5 Recognition Rate in Complicated Conditions

In a real-world environment, object recognition is usually carried under a com-
plicated condition with simultaneous variation of multiple variables including
variation of rotation, illumination and viewpoint. ETH-80 Database and ETHZ
another 53 Objects Database were used to test the recognition ability of the
algorithms in complicated conditions. In the two datasets, each object is repre-
sented by multiple images with different status such as upside down, rotation,
different viewpoint or illumination. Some of the selected test images are shown
in Fig. 9.

As shown in Fig. 10, USCF algorithm had the best performance among the
ten algorithms in the experiments. The recognition rate of USCF was 90 % when
the sizes of tiny objects were from 25×25 to 35×35 pixels. The best recognition
rate of USCF algorithm reached 95 % when the object size was 40×40 pixels.
Since unit entropy, HoG and GIST algorithms are sensitive to rotation, the best
performance of unit entropy algorithm was 75 % when the sizes of tiny object
was 35×35 pixels and the recognition rates of HoG and GIST algorithms were
no more than 60 % in all sizes. The recognition rates of gray histogram was
from 50 % to 63 % with the object sizes from 15×15 to 40×40 pixels. The best
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recognition rate of Hu’s moment invariants was 70 % when the object size was
30×30 pixels. In such a complex environment, entropy, ORB, SIFT and SURF
algorithms had poor performance. The best recognition rate of entropy algorithm
was 35 % when the object size was 20×20 pixels. The best performance of SIFT
and ORB was 40 % and 42 %, respectively, and SUFR algorithm could hardly
have effective recognition to any sizes of tiny objects used in the experiments.

The experimental results showed that USCF algorithm had best performance
among all algorithms tested in tiny object recognition under real complex envi-
ronment with simultaneous variation of rotation, illumination and viewpoint.

Fig. 9. Examples of selected test
images from ETH-80 Database and
ETHZ another 53 Objects Database

Fig. 10. Experimental results of USCF
and other nine algorithms on the test
images with different sizes under com-
plex conditions

4.6 Comparison of the Test Algorithms on Images from Videos

In this section, the ten algorithms were applied on the images from two videos,
a toy car video taken by ourselves and a jet flight video taken in an air show,
with background interference and random varying in rotation, viewpoint and
illumination as shown in Fig. 11. The jet of the flight was great background
interference because it is similar to the object. The information of the test images
is shown in Table 1. We cut the object image from a frame as the template and
used the object image with similar scale in other frames as candidate images.
All test images were directly cut from the videos without preprocessing.

From Table. 2, we can see that USCF had the best performance among
the test algorithms. The recognition rates of USCF were from 65 % to 100 %
while those of HoG and GIST, which performed best among the nine compared
algorithms, were from 2 % to 100 % and 4 % to 100 %, respectively. HoG and
GIST performed quite poorly when object rotates violently. Algorithms based
on simple statistic of gray values, such as entropy, unit entropy and gray his-
togram, were badly affected by the background whose color is similar to the
object color. Such background interference greatly affected Hu’s moment invari-
ants as well. SURF could hardly recognize the tiny objects. SIFT and ORB
were badly affected by comprehensive condition changes but had relative good
performance to the jet background.
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Table 1. The information of the test images used in the experiment

Video Images set Template Range of candidate Rotation Viewpoint Illumination

(number) size image size change chang

Toy Car Data1 (60) 40×29 38×27 to 44×33 Slight Mean Slight

Data2 (110) 36×26 32×22 to 38×28 Great Mean Slight

Data3 (26) 26×17 25×14 to 27×18 Slight Mean Mean

Jet Flight Data4 (51) 35×35 23×23 to 38×38 Slight Slight Slight

Data5 (100) 23×23 18×18 to 29×29 Slight Slight Slight

Table 2. The performance of the test algorithms
on images from the video datasets

Test algorithm Recognition rate

Data1 Data2 Data3 Data4 Data5

USCF 100% 100% 65% 90% 97%

SIFT 25% 0 0 90% 42%

SURF 0 0 0 4% 0

ORB 17% 5% 7% 60% 23%

Gray Histogram 50% 52% 57% 16% 29%

Entropy 13% 18% 4% 17% 2%

Unit Entropy 98% 77% 65% 53% 13%

GIST 96% 4% 100% 100% 100%

HoG 100% 2% 100% 100% 100%

Hu’s MI 27% 26% 11% 16% 5%

Fig. 11. Some recognition results
of USCF applied in recognizing
object images from two videos.
The template images are on the
left top corner. The red boxes
show the recognition results (Color
figure online)

5 Conclusions

In this paper, we proposed a novel object recognition algorithm, USCF algo-
rithm, based on unit statistical curvature feature. USCF algorithm calculates
mean curvature and Gaussian curvature of each pixel in the fitted curved sur-
face of an object image to generate a unit statistical curvature feature matrix to
characterize the tiny object. The experimental results showed that USCF algo-
rithm is robust to rotation and illumination variation, and can tolerate slight
viewpoint variation. Under complex test conditions with simultaneous rotation,
illumination, viewpoint variation and background interference, the recognition
rate of USCF was the highest among all ten tested algorithms. USCF cost less
than 40 ms on a desktop PC with Intel(R) Core(TM) i5-3470 CPU when the
image sizes were smaller than 40×40 pixels, which indicates that USCF can be
applied in a real time application for tiny object recognition.
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