Skip to main content

Anti-IgE Therapy

  • Chapter
  • First Online:
Asthma: Targeted Biological Therapies

Abstract

The propensity to develop an exaggerated antibody response to inhaled antigens operated by immunoglobulin E (IgE), which is defined as atopy, plays a central role in the pathobiology of allergic asthma [1]. The pleiotropic effects of IgE are mediated by activation of specific IgE receptors expressed by both immune-inflammatory and airway structural cells [2–4]. IgE were identified in 1967 by Ishizaka and Ishizaka, and since then these antibodies have been considered as suitable molecular targets for the development of anti-allergy therapies [5, 6]. However, it took almost 40 years to translate this key immunological discovery into the approval of the anti-IgE antibody omalizumab for the treatment of severe allergic asthma [7]. Indeed, omalizumab has been the first and for a long time the only biologic drug available in clinical practice for add-on therapy of uncontrolled asthma [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Froidure A, Mouthuy J, Durham SR, et al. Asthma phenotypes and IgE responses. Eur Respir J. 2016;47:304–19.

    Article  CAS  PubMed  Google Scholar 

  2. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8:205–17.

    Article  CAS  PubMed  Google Scholar 

  3. Hentges F, Leonard C, Arumugam K, et al. Immune responses to inhalant mammalian allergens. Front Immunol. 2014;5:234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dullaers M, De Bruyne R, Ramadani F, et al. The who, where and when of IgE in allergic airway disease. J Allergy Clin Immunol. 2012;129:635–45.

    Article  CAS  PubMed  Google Scholar 

  5. Ishizaka K, Ishizaka T. Identification of γE antibodies as a carrier of reaginic activity. J Immunol. 1967;6:1187–98.

    Google Scholar 

  6. Pelaia G, Vatrella A, Calabrese C, et al. New perspectives in asthma treatment. Allergy. 2000;55 suppl 61:60–6.

    Article  PubMed  Google Scholar 

  7. Global strategy for asthma management and prevention. Global Initiative for Asthma (GINA). 2016. Available from: http://www.ginasthma.org/.

  8. Pelaia G, Vatrella A, Busceti MT, et al. Anti-IgE therapy with omalizumab for severe asthma: current concepts and potential developments. Curr Drug Targets. 2015;16:171–8.

    Article  CAS  PubMed  Google Scholar 

  9. Takhar P, Corrigan CJ, Smurthwaite L, et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol. 2007;119:213–8.

    Article  CAS  PubMed  Google Scholar 

  10. Altin J, Shen C, Liston A. Understanding the genetic regulation of IgE production. Blood Rev. 2010;24:163–9.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell AM, Vachier I, Chanez P, et al. Expression of the high-affinity receptor for IgE on bronchial epithelial cells of asthmatics. Am J Respir Cell Mol Biol. 1998;19:92–7.

    Article  CAS  PubMed  Google Scholar 

  12. Gounni AS, Wellemans V, Yang J, et al. Human airway smooth muscle cells express the high affinity receptor for IgE (FcεRI): a critical role of FcεRI in human airway smooth muscle cell function. J Immunol. 2005;175:2613–21.

    Article  CAS  PubMed  Google Scholar 

  13. Wan T, Beavil RL, Fabiane SM, et al. The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nat Immunol. 2002;3:681–6.

    Article  CAS  PubMed  Google Scholar 

  14. Cao L, Yu K, Banh C, et al. Quantitative time-resolved phosphoproteomic analysis of mast cell signaling. J Immunol. 2007;179:5864–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saitoh S, Arudchandran R, Manetz TS, et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity. 2000;12:525–35.

    Article  CAS  PubMed  Google Scholar 

  16. Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol. 2006;6:218–30.

    Article  CAS  PubMed  Google Scholar 

  17. Holgate ST. Pathogenesis of asthma. Clin Exp Allergy. 2008;38:872–97.

    Article  CAS  PubMed  Google Scholar 

  18. Cruse G, Kaur D, Yang W, et al. Activation of human lung mast cells by monomeric immunoglobulin E. Eur Respir J. 2005;25:858–63.

    Article  CAS  PubMed  Google Scholar 

  19. Cruse G, Cockerill S, Bradding P. IgE alone promotes human lung mast cell survival through the autocrine production of IL-6. BMC Immunol. 2008;9:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Matsuda K, Piliponsky AM, Iikura M, et al. Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J Allergy Clin Immunol. 2005;116:1357–63.

    Article  CAS  PubMed  Google Scholar 

  21. Hibbert RG, Teriete P, Grundy GJ, et al. The structure of human CD23 and its interactions with IgE and CD21. J Exp Med. 2005;202:751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Acharya M, Borland G, Edkins AL, et al. CD23/FcεRII: molecular multi-tasking. Clin Exp Immunol. 2010;162:12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Campbell AM, Vignola AM, Chanez P, et al. Low-affinity receptor for IgE on human bronchial epithelial cells in asthma. Immunology. 1994;82:506–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lantz CS, Yamaguchi M, Oettgen HC, et al. IgE regulates mouse basophil FcεRI expression in vivo. J Immunol. 1997;158:2517–21.

    CAS  PubMed  Google Scholar 

  25. Yamaguchi M, Lantz CS, Oettgen HC, et al. IgE enhances mouse mast cell FcεRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med. 1997;17:663–72.

    Article  Google Scholar 

  26. Kisselgof AB, Oettgen HC. The expression of murine B cell CD23, in vivo, is regulated by its ligand IgE. Int Immunol. 1998;10:1377–84.

    Article  CAS  PubMed  Google Scholar 

  27. Saini SS, Klion AD, Holland SM, et al. The relationship between serum IgE and surface levels of FcεR on human leukocytes in various diseases: correlation of expression with FcεRI on basophils but not on monocytes or eosinophils. J Allergy Clin Immunol. 2000;106:514–20.

    Article  CAS  PubMed  Google Scholar 

  28. Borkowski TA, Jouvin MH, Lin SY, et al. Minimal requirements for IgE-mediated regulation of surface FcεRI. J Immunol. 2001;167:1290–6.

    Article  CAS  PubMed  Google Scholar 

  29. Kalesnikoff J, Huber M, Lam V, et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity. 2001;14:801–11.

    Article  CAS  PubMed  Google Scholar 

  30. Sihra BS, Kon OM, Grant JA, et al. Expression of high-affinity IgE receptors (FcεRI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol. 1997;99:699–706.

    Article  CAS  PubMed  Google Scholar 

  31. Foster B, Metcalfe DD, Prussin C. Human dendritic cell 1 and dendritic cell 2 subsets express FcεRI: correlation with serum IgE and allergic asthma. J Allergy Clin Immunol. 2003;112:1132–8.

    Article  CAS  PubMed  Google Scholar 

  32. MacGlashan Jr D. IgE receptor and signal transduction in mast cells and basophils. Curr Opin Immunol. 2008;20:717–23.

    Article  CAS  PubMed  Google Scholar 

  33. Weskamp G, Ford JW, Sturgill J, et al. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat Immunol. 2006;12:1293–8.

    Article  CAS  Google Scholar 

  34. Platzer B, Ruiter F, van der Mee J, et al. Soluble IgE receptors elements of the IgE network. Immunol Lett. 2011;141:36–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kraft S, Kinet J-P. New developments in FcεRI regulation, function and inhibition. Nat Rev Immunol. 2007;7:365–78.

    Article  CAS  PubMed  Google Scholar 

  36. Dehlink E, Platzer B, Baker AH, et al. A soluble form of the high affinity IgE receptor, FcɛRI, circulates in human serum. PLoS One. 2011;6:e19098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee BW, Simmons Jr CF, Wileman T, et al. Intracellular cleavage of newly synthesized low affinity Fcε receptor (FcεR2) provides a second pathway for the generation of the 28-kDa soluble FcεR2 fragment. J Immunol. 1989;142:1614–20.

    CAS  PubMed  Google Scholar 

  38. Mathews JA, Gibb DR, Chen BH, et al. CD23 disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived exosomes. J Biol Chem. 2010;285:37531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCloskey N, Hunt J, Beavil RL, et al. Soluble CD23 monomers inhibit and oligomers stimulate IgE synthesis in human B cells. J Biol Chem. 2007;282:24083–91.

    Article  CAS  PubMed  Google Scholar 

  40. MacKinnon AC, Farnworth SL, Hodkinson PS, et al. Regulation of alternative macrophage activation by galectin-3. J Immunol. 2008;180:2650–8.

    Article  CAS  PubMed  Google Scholar 

  41. Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760:616–35.

    Article  CAS  PubMed  Google Scholar 

  42. Liu FT. Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol. 2005;136:385–400.

    Article  CAS  PubMed  Google Scholar 

  43. Liu FT, Rabinovich GA. Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci. 2010;1183:158–82.

    Article  CAS  PubMed  Google Scholar 

  44. Maurer D, Fiebiger S, Ebner C, et al. Peripheral blood dendritic cells express FcεRI as a complex composed of FcεRI α- FcεRI γ-chains and can use this receptor for IgE-mediated allergen presentation. J Immunol. 1996;157:607–16.

    CAS  PubMed  Google Scholar 

  45. Maurer D, Fiebiger E, Reininger B, et al. FcεRI on dendritic cells delivers IgE-bound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation. J Immunol. 1998;161:2731–9.

    CAS  PubMed  Google Scholar 

  46. Khan SH, Grayson MH. Cross-linking IgE augments human conventional dendritic cell production of CC chemokine ligand 28. J Allergy Clin Immunol. 2010;125:265–7.

    Article  CAS  PubMed  Google Scholar 

  47. Lynch JP, Mazzone SB, Rogers MJ, et al. The plasmacytoid dendritic cell: at the cross-roads in asthma. Eur Respir J. 2014;43:264–75.

    Article  CAS  PubMed  Google Scholar 

  48. Soussi Gounni A, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature. 1994;367:183–6.

    Article  Google Scholar 

  49. Rajakulasingam K, Durham SR, O’Brien F, et al. Enhanced expression of high-affinity IgE receptor (FcεRI) α chain in human allergen-induced rhinitis with co-localization to mast cells, macrophages, eosinophils, and dendritic cells. J Allergy Clin Immunol. 1997;100:78–86.

    Article  CAS  PubMed  Google Scholar 

  50. Smith SJ, Ying S, Meng Q, et al. Blood eosinophils from atopic donors express messenger RNA for the α, β, and γ subunits of the high-affinity IgE receptor (FcεRI) and intracellular, but not cell surface, subunit protein. J Allergy Clin Immunol. 2000;105:309–17.

    Article  CAS  PubMed  Google Scholar 

  51. Kim IS, Kim MJ, Kim DH, et al. Different anti-apoptotic effects of normal and asthmatic serum on normal eosinophil apoptosis depending on house dust mite-specific IgE. Mol Biol Rep. 2013;40:5875–81.

    Article  CAS  PubMed  Google Scholar 

  52. Palaniyandi S, Tomei E, Li Z, et al. CD23-dependent transcytosis of IgE and immune complex across the polarized human respiratory epithelial cells. J Immunol. 2011;186:3484–96.

    Article  CAS  PubMed  Google Scholar 

  53. Palaniyandi S, Liu X, Periasamy S, et al. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of allergic airway inflammation. Mucosal Immunol. 2015;8:1262–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Redhu NS, Gounni AS. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle. Pulm Pharmacol Ther. 2013;26:86–94.

    Article  CAS  PubMed  Google Scholar 

  55. Roth M, Zhong J, Zumkeller C, et al. The role of IgE-receptors in IgE-dependent airway smooth muscle cell remodelling. PLoS One. 2013;8:e56015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Presta LG, Lahr SJ, Shields RL, et al. Humanization of an antibody directed against IgE. J Immunol. 1993;151:2623–32.

    CAS  PubMed  Google Scholar 

  57. Spector S. Omalizumab efficacy in allergic disease. Panminerva Med. 2004;46:141–8.

    CAS  PubMed  Google Scholar 

  58. Hochhaus G, Brookman L, Fox H, et al. Pharmacodynamics of omalizumab: implications for optimised dosing strategy and clinical efficacy in the treatment of allergic asthma. Curr Med Res Opin. 2003;19:491–8.

    Article  CAS  PubMed  Google Scholar 

  59. Fox JA, Hotaling TE, Struble C, et al. Tissue distribution and complex generation with IgE of an anti-IgE antibody after intravenous administration in cynomolgus monkeys. J Pharmacol Exp Ther. 1996;279:1000–8.

    CAS  PubMed  Google Scholar 

  60. Chang TW, Wu PC, Hsu CL, et al. Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol. 2007;93:63–119.

    Article  CAS  PubMed  Google Scholar 

  61. Presta L, Shields R, O’ Connell L, et al. The binding site of a human immunoglobulin E for its high affinity receptor. J Biol Chem. 1994;269:26368–73.

    CAS  PubMed  Google Scholar 

  62. Domingo C. Omalizumab for severe asthma: efficacy beyond the atopic patient? Drugs. 2014;74:521–33.

    Article  CAS  PubMed  Google Scholar 

  63. Noga O, Hanf G, Brachmann I, et al. Effect of omalizumab treatment on peripheral eosinophil and T-lymphocyte function in patients with allergic asthma. J Allergy Clin Immunol. 2006;117:1493–9.

    Article  CAS  PubMed  Google Scholar 

  64. Holgate S, Casale T, Wenzel S, et al. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol. 2005;115:459–65.

    Article  CAS  PubMed  Google Scholar 

  65. Marcus P. Incorporating anti-IgE (omalizumab) therapy in clinical practice: practice management implications. Chest. 2006;129:466–74.

    Article  CAS  PubMed  Google Scholar 

  66. Miller CWT, Krishnaswamy N, Johnston C, et al. Severe asthma and the omalizumab option. Clin Mol Allergy. 2008;6:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Domingo C, Pacheco A, Hinojosa M, et al. The relevance of IgE in the pathogenesis of allergy: the effect of an anti-IgE drug in asthma and other diseases. Recent Pat Inflamm Allergy Drug Discov. 2007;1:151–64.

    Article  CAS  PubMed  Google Scholar 

  68. Buhl R, Marco AG, Cohen D, et al. Eligibility for treatment with omalizumab in Italy and Germany. Respir Med. 2014;108:50–6.

    Article  PubMed  Google Scholar 

  69. Hendeles L, Sorkness CA. Anti-immunoglobulin E therapy with omalizumab for asthma. Ann Pharmacother. 2007;41:1397–410.

    Article  CAS  PubMed  Google Scholar 

  70. D’Amato G. Role of anti-IgE monoclonal antibody (omalizumab) in the treatment of bronchial asthma and allergic respiratory diseases. Eur J Pharmacol. 2006;533:302–7.

    Article  PubMed  CAS  Google Scholar 

  71. Fahy JV, Fleming HE, Wong HH, et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med. 1997;155:1828–34.

    Article  CAS  PubMed  Google Scholar 

  72. Busse W, Corren J, Lanier BQ, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108:184–90.

    Article  CAS  PubMed  Google Scholar 

  73. Solèr M, Matz J, Townley R, et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J. 2001;18:254–61.

    Article  PubMed  Google Scholar 

  74. Holgate ST, Chuchalin AG, Hebert J, et al. Efficacy and tolerability of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin Exp Allergy. 2004;34:632–8.

    Article  CAS  PubMed  Google Scholar 

  75. Vignola AM, Humbert M, Bousquet J, et al. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. Allergy. 2004;59:709–17.

    Article  CAS  PubMed  Google Scholar 

  76. Ayres JG, Higgins B, Chilvers ER, et al. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with poorly controlled (moderate-to-severe) allergic asthma. Allergy. 2004;59:701–8.

    Article  CAS  PubMed  Google Scholar 

  77. Humbert M, Beasley R, Ayres J, et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005;60:309–16.

    Article  CAS  PubMed  Google Scholar 

  78. Price D. The use of omalizumab in asthma. Prim Care Respir J. 2008;17:62–72.

    Article  PubMed  Google Scholar 

  79. Pelaia G, Vatrella A, Maselli R. The potential of biologics for the treatment of asthma. Nat Rev Drug Discov. 2012;11:958–72.

    Article  CAS  PubMed  Google Scholar 

  80. Tsabouri S, Tseretopoulou X, Priftis K, et al. Omalizumab for the treatment of inadequately controlled allergic rhinitis: a systematic review and meta-analysis of randomized clinical trials. J Allergy Clin Immunol Pract. 2014;2:332–40.

    Article  PubMed  Google Scholar 

  81. Hanania NA, Alpan O, Hamilos DL, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011;154:573–82.

    Article  PubMed  Google Scholar 

  82. Busse WW, Morgan WJ, Gergen PJ, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364:1005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodrigo GJ, Neffen H, Castro-Rodriguez JA. Efficacy and safety of subcutaneous omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest. 2011;139:28–35.

    Article  CAS  PubMed  Google Scholar 

  84. Molimard M, de Blay F, Didier A, et al. Effectiveness of omalizumab (Xolair) in the first patients treated in real-life practice in France. Respir Med. 2008;102:71–6.

    Article  PubMed  Google Scholar 

  85. Korn S, Thielen A, Seyfried S, et al. Omalizumab in patients with severe persistent allergic asthma in a real-life setting in Germany. Respir Med. 2009;103:1725–31.

    Article  CAS  PubMed  Google Scholar 

  86. Brusselle G, Michils A, Louis R, et al. Real-life effectiveness of omalizumab in patients with severe persistent allergic asthma: The PERSIST study. Respir Med. 2009;103:1633–42.

    Article  CAS  PubMed  Google Scholar 

  87. Cazzola M, Camiciottoli G, Bonavia M, et al. Italian real-life experience of omalizumab. Respir Med. 2010;104:1410–6.

    Article  CAS  PubMed  Google Scholar 

  88. Molimard M, Buhl R, Niven R, et al. Omalizumab reduces oral corticosteroid use in patients with severe allergic asthma: real-life data. Respir Med. 2010;104:1381–5.

    Article  CAS  PubMed  Google Scholar 

  89. Storms W, Bowdish MS, Farrar JR. Omalizumab and asthma control in patients with moderate-to-severe allergic asthma: a 6-year pragmatic data review. Allergy Asthma Proc. 2012;33:172–7.

    Article  CAS  PubMed  Google Scholar 

  90. Tzortzaki EG, Georgiou A, Kampas D, et al. Long-term omalizumab treatment in severe allergic asthma: the South-Eastern Mediterranean “real-life” experience. Pulm Pharmacol Ther. 2012;25:77–82.

    Article  CAS  PubMed  Google Scholar 

  91. Grimaldi-Bensouda L, Zureik M, Aubier M, et al. Does omalizumab make a difference to the real-life treatment of asthma exacerbations? Results from a large cohort of patients with severe uncontrolled asthma. Chest. 2013;143:398–405.

    Article  CAS  PubMed  Google Scholar 

  92. Lopez Tiro JJ, Contreras EA, Del Pozo ME, et al. Real life study of three years omalizumab in patients with difficult-to-control asthma. Allergol Immunopathol. 2015;43:120–6.

    Article  Google Scholar 

  93. Novelli F, Latorre M, Vergura L, et al. Asthma control in severe asthmatics under treatment with omalizumab: a cross-sectional observational study in Italy. Pulm Pharmacol Ther. 2015;31:123–9.

    Article  CAS  PubMed  Google Scholar 

  94. Pelaia G, Gallelli L, Romeo P, et al. Omalizumab decreases exacerbation frequency, oral intake of corticosteroids and peripheral blood eosinophils in atopic patients with uncontrolled asthma. Int J Clin Pharmacol Ther. 2011;49:713–21.

    Article  CAS  PubMed  Google Scholar 

  95. Ledford DK. Omalizumab: overview of pharmacology and efficacy in asthma. Expert Opin Biol Ther. 2009;9:933–43.

    Article  CAS  PubMed  Google Scholar 

  96. Lanier BQ, Corren J, Lumry W, et al. Omalizumab is effective in the long-term control of severe allergic asthma. Ann Allergy Asthma Immunol. 2003;91:154–9.

    Article  CAS  PubMed  Google Scholar 

  97. Holgate S, Smith N, Massanari M, et al. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy. 2009;64:1728–36.

    Article  CAS  PubMed  Google Scholar 

  98. Bai TR, Vonk JM, Postma DS, et al. Severe exacerbations predict excess lung function decline in asthma. Eur Respir J. 2007;30:452–6.

    Article  CAS  PubMed  Google Scholar 

  99. Djukanovic R, Wilson SJ, Kraft M, et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med. 2004;170:583–93.

    Article  PubMed  Google Scholar 

  100. Prieto L, Gutiérrez V, Colas C, et al. Effect of omalizumab on adenosine 5’-monophosphate responsiveness in subjects with allergic asthma. Int Arch Allergy Immunol. 2006;139:122–31.

    Article  CAS  PubMed  Google Scholar 

  101. Silkoff PE, Romero FA, Gupta N, et al. Exhaled nitric oxide in children with asthma receiving Xolair (omalizumab), a monoclonal anti-immunoglobulin E antibody. Pediatrics. 2004;113:e308–12.

    Article  PubMed  Google Scholar 

  102. Noga O, Hanf G, Kunkel G. Immunological and clinical changes in allergic asthmatics following treatment with omalizumab. Int Arch Allergy Immunol. 2003;131:46–52.

    Article  CAS  PubMed  Google Scholar 

  103. Massanari M, Holgate ST, Busse WW, et al. Effect of omalizumab on peripheral blood eosinophilia in allergic asthma. Respir Med. 2010;104:188–96.

    Article  CAS  PubMed  Google Scholar 

  104. Hanania NA, Wenzel S, Rosén K, et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013;187:804–11.

    Article  CAS  PubMed  Google Scholar 

  105. Bousquet J, Rabe K, Humbert M, et al. Predicting and evaluating response to omalizumab in patients with severe allergic asthma. Respir Med. 2007;101:1483–92.

    Article  CAS  PubMed  Google Scholar 

  106. Bousquet J, Siergiejko Z, Swiebocka E, et al. Persistency of response to omalizumab therapy in severe allergic (IgE-mediated) asthma. Allergy. 2011;66:671–8.

    Article  CAS  PubMed  Google Scholar 

  107. Huang YC, Leyko B, Frier M. Effects of omalizumab and budesonide on markers of inflammation in human bronchial epithelial cells. Ann Allergy Asthma Immunol. 2005;95:443–51.

    Article  CAS  PubMed  Google Scholar 

  108. Zietkowski Z, Skiepko R, Tomasiak-Lozowska MM, et al. Anti-IgE therapy with omalizumab decreases endothelin-1 in exhaled breath condensate of patients with severe persistent allergic asthma. Respiration. 2010;80:534–42.

    Article  CAS  PubMed  Google Scholar 

  109. Hoshino M, Ohtawa J. Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration. 2012;83:520–8.

    Article  CAS  PubMed  Google Scholar 

  110. Tajiri T, Niimi A, Matsumoto H, et al. Comprehensive efficacy of omalizumab for severe refractory asthma: a time-series observational study. Ann Allergy Asthma Immunol. 2014;113:470–5.

    Article  CAS  PubMed  Google Scholar 

  111. Riccio AM, Dal Negro RW, Micheletto C, et al. Omalizumab modulates bronchial reticular basement membrane thickness and eosinophil infiltration in severe persistent allergic asthma patients. Int J Immunopathol Pharmacol. 2012;25:475–84.

    CAS  PubMed  Google Scholar 

  112. Mauri P, Riccio AM, Rossi R, et al. Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol Lett. 2014;162:2–10.

    Article  CAS  PubMed  Google Scholar 

  113. de Llano LP, Vennera Mdel C, Alvarez FJ, et al. Effects of omalizumab in non-atopic asthma: results from a Spanish multicenter registry. J Asthma. 2013;50:296–301.

    Article  PubMed  CAS  Google Scholar 

  114. Garcia G, Magnan A, Chiron R, et al. A proof of concept randomized-controlled trial of omalizumab in patients with severe difficult to control nonatopic asthma. Chest. 2013;144:411–9.

    Article  CAS  PubMed  Google Scholar 

  115. Lommatzsch M, Korn S, Buhl R, et al. Against all odds: anti-IgE for intrinsic asthma? Thorax. 2014;69:94–6.

    Article  PubMed  Google Scholar 

  116. Pelaia G, Gallelli L, Renda T, et al. Update on optimal use of omalizumab in management of asthma. J Asthma Allergy. 2011;4:49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Corren J, Shapiro G, Reimann J, et al. Allergen skin tests and free IgE levels during reduction and cessation of omalizumab therapy. J Allergy Clin Immunol. 2008;121:506–11.

    Article  CAS  PubMed  Google Scholar 

  118. Nopp A, Johansson SG, Adédoyin J, et al. After 6 years with Xolair; a 3-year withdrawal follow-up. Allergy. 2010;65:56–60.

    Article  CAS  PubMed  Google Scholar 

  119. Baena-Cagnani CE, Teijeiro A, Canonica GW. Four-year follow-up in children with moderate/severe uncontrolled asthma after withdrawal of a 1-year omalizumab treatment. Curr Opin Allergy Clin Immunol. 2015;15:267–71.

    Article  CAS  PubMed  Google Scholar 

  120. Kuprys-Lipinska I, Kuna P. Loss of asthma control after cessation of omalizumab treatment: real life data. Postepy Dermatol Alergol. 2014;31:1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Solèr M. Omalizumab for severe allergic asthma: 7 years and open questions. Respiration. 2014;88:158–61.

    Article  PubMed  CAS  Google Scholar 

  122. Holgate ST, Djukanovich R, Casale T, et al. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy. 2005;35:408–16.

    Article  CAS  PubMed  Google Scholar 

  123. Cox L, Platts-Mills TAE, Finegold I, et al. American Academy of Allergy, Asthma and Immunology/American College of Allergy, Asthma and Immunology Joint Task Force report on omalizumab-associated anaphylaxis. J Allergy Clin Immunol. 2007;120:1373–7.

    Article  CAS  PubMed  Google Scholar 

  124. Busse W, Buhl R, Fernandez Vidaurre C, et al. Omalizumab and the risk of malignancy: results from a pooled analysis. J Allergy Clin Immunol. 2012;129:983–9.

    Article  CAS  PubMed  Google Scholar 

  125. Long A, Rahmaoui A, Rothman KJ, et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J Allergy Clin Immunol. 2014;134:560–7.

    Article  CAS  PubMed  Google Scholar 

  126. Winchester DE, Jacob A, Murphy T. Omalizumab for asthma. N Engl J Med. 2006;355:1281–2.

    Article  CAS  PubMed  Google Scholar 

  127. Puéchal X, Rivereau P, Vinchon F. Churg-Strauss syndrome associated with omalizumab. Eur J Intern Med. 2008;19:364–6.

    Article  PubMed  CAS  Google Scholar 

  128. Bargagli E, Madioni C, Olivieri C, et al. Churg-Strauss vasculitis in a patient treated with omalizumab. J Asthma. 2008;45:115–6.

    Article  CAS  PubMed  Google Scholar 

  129. Vaglio A, Moosig F, Zwerina J. Churg-Strauss syndrome: update on pathophysiology and treatment. Curr Opin Rheumatol. 2012;24:24–30.

    Article  CAS  PubMed  Google Scholar 

  130. Cruz AA, Lima F, Sarinho E, et al. Safety of anti-immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infections. Clin Exp Allergy. 2007;37:197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Corren J, Casale TB, Lanier B, et al. Safety and tolerability of omalizumab. Clin Exp Allergy. 2009;39:788–97.

    Article  CAS  PubMed  Google Scholar 

  132. Namazy J, Cabana MD, Scheuerle AE, et al. The Xolair Pregnancy Registry (EXPECT): the safety of omalizumab use during pregnancy. J Allergy Clin Immunol. 2015;135:407–12.

    Article  CAS  PubMed  Google Scholar 

  133. Tan RA, Corren J. Safety of omalizumab in asthma. Expert Opin Drug Saf. 2011;10:463–71.

    Article  CAS  PubMed  Google Scholar 

  134. Pelaia G, Renda T, Romeo P, et al. Omalizumab in the treatment of severe asthma: efficacy and current problems. Ther Adv Respir Dis. 2008;2:409–21.

    Article  PubMed  Google Scholar 

  135. Brown R, Turk F, Dale P, et al. Cost-effectiveness of omalizumab in patients with severe persistent allergic asthma. Allergy. 2007;62:149–53.

    Article  CAS  PubMed  Google Scholar 

  136. Oba Y, Salzman GA. Cost-effectiveness analysis of omalizumab in adults and adolescents with moderate-to-severe allergic asthma. J Allergy Clin Immunol. 2004;114:265–9.

    Article  PubMed  Google Scholar 

  137. Dewilde S, Turk F, Tambour M, et al. The economic value of anti-IgE in severe persistent, IgE-mediated (allergic) asthma patients: adaptation of INNOVATE to Sweden. Curr Med Res Opin. 2006;22:1765–76.

    Article  CAS  PubMed  Google Scholar 

  138. van Nooten F, Stern S, Braunstahl GJ, et al. Cost-effectiveness of omalizumab for uncontrolled allergic asthma in the Netherlands. J Med Econ. 2012;16:342–8.

    Article  PubMed  Google Scholar 

  139. Dal Negro RW, Pradelli L, Tognella S, et al. Cost utility of add-on omalizumab in difficult-to-treat allergic asthma in Italy. Eur Ann Allergy Clin Immunol. 2011;43:45–53.

    CAS  PubMed  Google Scholar 

  140. Dal Negro RW, Tognella S, Pradelli L. A 36-month study on the cost/utility of add-on omalizumab in persistent difficult-to-treat atopic asthma in Italy. J Asthma. 2012;49:843–8.

    Article  CAS  PubMed  Google Scholar 

  141. Sullivan SD, Turk F. An evaluation of the cost-effectiveness of omalizumab for the treatment of severe allergic asthma. Allergy. 2008;63:670–84.

    Article  CAS  PubMed  Google Scholar 

  142. Arm JP, Bottoli I, Skerjanek A, et al. Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin Exp Allergy. 2014;44:1371–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Menzella F, Lusuardi M, Galeone C, Zucchi L. Tailored therapy for severe asthma. Multidiscip Respir Med. 2015;10:1.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nyborg AC, Zacco A, Ettinger R, et al. Development of an antibody that neutralizes soluble IgE and eliminates IgE expressing B-cells. Cell Mol Immunol. 2016;13:391–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelaia, G., Vatrella, A., Maselli, R. (2017). Anti-IgE Therapy. In: Asthma: Targeted Biological Therapies. Springer, Cham. https://doi.org/10.1007/978-3-319-46007-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46007-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46005-5

  • Online ISBN: 978-3-319-46007-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics