Skip to main content

Application of Allometric Principles in Pediatric Drug Development

  • Chapter
  • First Online:
Fundamentals of Pediatric Drug Dosing
  • 1110 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Chappell WR, Mordenti J (1991) Extrapolation of toxicological and pharmacological data from animals to humans. Adv Drug Res 20:1–116

    CAS  Google Scholar 

  3. Boxenbaum H (1984) Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab Rev 15:1071–1121

    Article  CAS  PubMed  Google Scholar 

  4. Boxenbaum H, D’Souza RW (1990) Interspecies pharmacokinetic scaling, biological design and neoteny. Adv Drug Res 19:139–196

    CAS  Google Scholar 

  5. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315

    Article  CAS  Google Scholar 

  6. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 4:511–541

    Google Scholar 

  7. Brody S, Procter RC, Ashworth US (1934) Basal metabolism, endogenous nitrogen, creatinine and neutral sulphur excretions as functions of body weight. Univ Missouri Agric Exp Sta Res Bull 220:1–40

    Google Scholar 

  8. Brody S (1945) Bioenergetics and growth, with special reference to the efficiency complex in domestic animals. Hafner Press/MacMillan Publishers, New York/London

    Google Scholar 

  9. Heusner AA (1982) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact? Respir Physiol 48:13–25

    Article  CAS  PubMed  Google Scholar 

  10. Heusner AA (1991) Body mass, maintenance and basal metabolism in dogs. J Nutr 121(11 Suppl):S8–S17

    CAS  PubMed  Google Scholar 

  11. Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: Toxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol 81A:741–754

    Article  Google Scholar 

  12. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  13. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  CAS  PubMed  Google Scholar 

  14. Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev Camb Philos Soc 80:611–662

    Article  PubMed  Google Scholar 

  15. White CR, Cassey P, Blackburn TM (2007) Allometric exponents do not support a universal metabolic allometry. Ecology 88:315–323

    Article  PubMed  Google Scholar 

  16. White CR, Seymour RS (2005) Allometric scaling of mammalian metabolism. J Exp Biol 208(Pt 9):1611–1619

    Article  CAS  PubMed  Google Scholar 

  17. White CR, Seymour RS (2005) Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 142:74–78

    Article  PubMed  Google Scholar 

  18. Packard GC, Birchard GF (2008) Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J Exp Biol 211(Pt 22):3581–3587

    Article  PubMed  Google Scholar 

  19. Bartels H (1982) Metabolic rate of mammals equals the 0.75 power of their body weight. Exp Biol Med 7:1–11

    Google Scholar 

  20. Bejan A (2005) The constructal law of organization in nature: tree-shaped flows and body size. J Exp Biol 208:1677–1686

    Article  PubMed  Google Scholar 

  21. Aschoff J, Pohl H (1970) Rhythmic variations in energy metabolism. Fed Proc 29:1541–1552

    CAS  PubMed  Google Scholar 

  22. Bartholomew GA, Tucker VA (1964) Size, body temperature, thermal conductance, oxygen consumption, and heart rate in Australian varanid lizards. Physiol Zool 37:341–354

    Article  Google Scholar 

  23. Galvao PE, Tarasantchi J, Guertzenstein P (1965) Heat production of tropical snakes in relation to body weight and body surface. Am J Physiol 209:501–506

    CAS  PubMed  Google Scholar 

  24. Bokma F (2004) Evidence against universal metabolic allometry. Funct Ecol 18:184–187

    Article  Google Scholar 

  25. Kozłowski J, Konarzewski M (2004) Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct Ecol 18:283–289

    Article  Google Scholar 

  26. Kozłowski J, Konarzewski M (2005) West, Brown and Enquist’s model of allometric scaling again: the same questions remain. Funct Ecol 19:739–743

    Article  Google Scholar 

  27. Painter PR (2005) The fractal geometry of nutrient exchange surfaces does not provide an explanation for 3/4-power metabolic scaling. Theor Biol Med Model 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chaui-Berlinck JG (2006) A critical understanding of the fractal model of metabolic scaling. J Exp Biol 209:3045–3054

    Article  PubMed  Google Scholar 

  29. Petit G, Anfodillo T (2009) Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. J Theor Biol 259:1–4

    Article  PubMed  Google Scholar 

  30. Makarieva AM, Gorshkov VG, Li BL (2005) Revising the distributive network models of West, Brown & Enquist (1997) and Banavar, Maritan & Rinaldo (1999). Metabolic inequity of living tissues provides clues for the observed allometric scaling rules. J Theor Biol 237:291–307

    Article  PubMed  Google Scholar 

  31. Savage VM, Deeds EJ, Fontana W (2008) Sizing up allometric scaling theory. PLoS Comput Biol 4(9), e1000171

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the “3/4-law” of metabolism. J Theor Biol 209:9–27

    Article  CAS  PubMed  Google Scholar 

  33. Glazier DS (2010) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev Camb Philos Soc 85:111–138

    Article  PubMed  Google Scholar 

  34. Glazier DS (2006) The 3/4-power law is not universal: evolution of isometric, ontogenetic metabolic scaling in pelagic animals. BioScience 56:325–332

    Article  Google Scholar 

  35. Glazier DS (2014) Metabolic scaling in complex living systems. Systems 2:451–540

    Article  Google Scholar 

  36. Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, Enquist BJ, Brown JH (2004) The predominance of quarter-power scaling in biology. Funct Ecol 18:257–282

    Article  Google Scholar 

  37. Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc 41:587–640

    Article  CAS  PubMed  Google Scholar 

  38. Mahmood I (2005) Introduction to allometry. In: Interspecies pharmacokinetic scaling: principles and application of allometric scaling. Pine House Publishers, Rockville, pp 23–38

    Google Scholar 

  39. Mahmood I (2013) Dose selection in children. In: Pharmacokinetic allometric scaling in pediatric drug development. Pine House Publishers, Rockville, pp 151–160

    Google Scholar 

  40. Alcorn J, McNamara PJ (2002) Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet 41:959–998

    Article  CAS  PubMed  Google Scholar 

  41. Alcorn J, McNamara PJ (2002) Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin Pharmacokinet 41:1077–1094

    Article  CAS  PubMed  Google Scholar 

  42. Kanamori M, Takahashi H, Echizen H (2002) Developmental changes in the liver weight- and body weight-normalized clearance of theophylline, phenytoin and cyclosporine in children. Int J Clin Pharmacol Ther 40:485–492

    Article  CAS  PubMed  Google Scholar 

  43. Hayton WL, Kneer J, de Groot R, Stoeckel K (1996) Influence of maturation and growth on cefetamet pivoxil pharmacokinetics: rational dosing for infants. Antimicrob Agents Chemother 40:567–574

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahmood I (2006) Prediction of drug clearance in children from adults: a comparison of several allometric methods. Br J Clin Pharmacol 61:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahmood I (2007) Prediction of drug clearance in children: Impact of allometric exponents, body weight and age. Ther Drug Monit 29:271–278

    Article  PubMed  Google Scholar 

  46. Mahmood I (2010) Prediction of drug clearance in children 3 months and younger: an allometric approach. Drug Metabol Drug Interact 25:25–34

    Article  CAS  PubMed  Google Scholar 

  47. Strougo A, Yassen A, Monnereau C, Danhof M, Freijer J (2014) Predicting the “First dose in children” of CYP3A-metabolized drugs: evaluation of scaling approaches and insights into the CYP3A7-CYP3A4 switch at young ages. J Clin Pharmacol 54:1006–1015

    Article  CAS  PubMed  Google Scholar 

  48. Mahmood I (2013) Prediction of drug clearance in children from adult clearance: Allometric scaling versus exponent 0.75. In: Pharmacokinetic allometric scaling in pediatric drug development. Pine House Publishers, Rockville, pp 41–55

    Google Scholar 

  49. Peeters MY, Allegaert K, Blussé van Oud-Alblas HJ, Cella M, Tibboel D, Danhof M, Knibbe CA (2010) Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin Pharmacokinet 49:269–275

    Article  CAS  PubMed  Google Scholar 

  50. Björkman S (2006) Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: How accurate are available scaling methods? Clin Pharmacokinet 45:1–11

    Article  PubMed  Google Scholar 

  51. Edginton AN, Shah B, Sevestre M et al (2013) The integration of allometry and virtual populations to predict clearance and clearance variability in pediatric populations over the age of 6 years. Clin Pharmacokinet 52:693–703

    Article  PubMed  Google Scholar 

  52. Momper JD, Mulugeta Y, Green DJ et al (2013) Adolescent dosing and labeling since the Food and Drug Administration Amendments Act of 2007. JAMA Pediatr 167:926–932

    Article  PubMed  Google Scholar 

  53. Heusner AA (1982) Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity. Respir Physiol 48:13–25

    Article  CAS  PubMed  Google Scholar 

  54. Mahmood I (2013) Prediction of drug clearance in children (≤5 years) by Boxenbaum Coefficient Methods. In: Pharmacokinetic allometric scaling in pediatric drug development. Pine House Publishers, Rockville, pp 64–77

    Google Scholar 

  55. Mahmood I (2013) Prediction of drug clearance in preterm and term neonates: Different exponents for different age groups? In: Pharmacokinetic allometric scaling in pediatric drug development. Pine House Publishers, Rockville, pp 88–100

    Google Scholar 

  56. Mahmood I, Staschen CM, Goteti K (2014) Prediction of drug clearance in children: an evaluation of the predictive performance of several models. AAPS J 16(6):1334–1343

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mahmood I (2015) Prediction of drug clearance in premature and mature neonates, infants and children ≤2 years of age: A comparison of the predictive. J Clin Pharmacol. doi:10.1002/jcph.652 [Epub ahead of print]

    Google Scholar 

  58. Mahmood I (2015) Mechanistic versus allometric models for the prediction of drug clearance in neonates (<3 months of age). J Clin Pharmacol 55(6):718–720

    Article  CAS  PubMed  Google Scholar 

  59. Johnson TN, Rostami-Hodjegan A, Tucker GT (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45:931–956

    Article  CAS  PubMed  Google Scholar 

  60. Edginton AN, Schmitt W, Voith B, Willmann S (2006) A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet 45:683–704

    Article  CAS  PubMed  Google Scholar 

  61. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T (1997) Expression of CYP3A in the human liver-evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 247:625–634

    Article  CAS  PubMed  Google Scholar 

  62. Wang C, Allegaert K, Peeters MY, Tibboel D, Danhof M, Knibbe CA (2014) The allometric exponent for scaling clearance varies with age: a study on seven propofol datasets ranging from preterm neonates to adults. Br J Clin Pharmacol 77:149–159

    Article  CAS  PubMed  Google Scholar 

  63. Wang C, Sadhavisvam S, Krekels EH, Dahan A, Tibboel D, Danhof M, Vinks AA, Knibbe CA (2013) Developmental changes in morphine clearance across the entire paediatric age range are best described by a bodyweight-dependent exponent model. Clin Drug Investig 33:523–534

    Article  PubMed  Google Scholar 

  64. Wang C, Peeters MY, Allegaert K, van Oud-Alblas HJ, Krekels EH et al (2012) A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm Res 29:1570–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bartelink IH, Boelens JJ, Bredius RG, Egberts AC, Wang C et al (2012) Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet 51:331–345

    Article  CAS  PubMed  Google Scholar 

  66. Wang C, Allegaert K, Tibboel D, Danhof M, van der Marel CD, Mathot RA (2014) Knibbe CA Population pharmacokinetics of paracetamol across the human age-range from (pre)term neonates, infants, children to adults. J Clin Pharmacol 54:619–629

    Article  CAS  PubMed  Google Scholar 

  67. Staschen CM, Mahmood I (2013) A population pharmacokinetic model of remifentanil in pediatric patients using body-weight-dependent allometric exponents. Drug Metabol Drug Interact 28(4):231–237

    Article  CAS  PubMed  Google Scholar 

  68. Veal GJ, Nguyen L, Paci A, Riggi M, Amiel M, Valteau-Couanet D, Brock P, Ladenstein R, Vassal G (2012) Busulfan pharmacokinetics following intravenous and oral dosing regimens in children receiving high-dose myeloablative chemotherapy for high-risk neuroblastoma as part of the HR-NBL-1/SIOPEN trial. Eur J Cancer 48:3063–3072

    Article  CAS  PubMed  Google Scholar 

  69. Windorfer A, Kuenzer W, Urbanek R (1974) The influence of age on the activity of acetylsalicylic acid-esterase and protein-salicylate binding. Eur J Clin Pharmacol 7:227–231

    Article  CAS  PubMed  Google Scholar 

  70. Ehrnebo M, Agurell S, Jalling B, Boreus LO (1971) Age differences in drug binding by plasma proteins: studies on human fetuses, neonates and adults. Eur J Clin Pharmacol 3:189–193

    Article  CAS  PubMed  Google Scholar 

  71. Mahmood I (2008) Prediction of pharmacokinetic parameters in children: application of allometric principles. In: Pediatric pharmacology and pharmacokinetics. Pine House Publishers, Rockville, pp 142–183

    Google Scholar 

  72. Mahmood I (2013) Prediction of volume of distribution and half-life in pediatrics. In: Pharmacokinetic allometric scaling in pediatric drug development. Pine House Publishers, Rockville, pp 101–120

    Google Scholar 

  73. Mahmood I (2005) Interspecies scaling of elimination half-life and mean residence time. In: Interspecies pharmacokinetic scaling: principles and application of allometric scaling. Pine House Publishers, Rockville, pp 206–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftekhar Mahmood PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahmood, I. (2016). Application of Allometric Principles in Pediatric Drug Development. In: Mahmood, I., Burckart, G. (eds) Fundamentals of Pediatric Drug Dosing. Adis, Cham. https://doi.org/10.1007/978-3-319-43754-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43754-5_5

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-43752-1

  • Online ISBN: 978-3-319-43754-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics