Skip to main content

Kinetics of Charge Carrier Confinement in Thin Dielectrics

  • Chapter
  • First Online:
Dielectric Breakdown in Gigascale Electronics

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 423 Accesses

Abstract

The trapping of charge carriers in thin dielectric films is discussed in the present section. Mechanisms affecting electron confinement are studied in order to gain insight into the interplay between the various charged species contributing to dielectric failure (i.e., electrons, traps, and ions). A novel detection method for identifying ion drift in interconnect devices is presented. This technique is based on the change in charge fluence as a result of ionic drift during BTS. Leakage current relaxation is described as originating from the trapping of charge carriers into defects (i.e., traps and ions). A model is proposed for describing the kinetics of charge trapping at very early stages of field and temperature stress. This section concludes with a mathematical representation of electron trapping that will serve as the premise for the theory of dielectric breakdown in nano-porous films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkin, J. M., Shaw, T. M., Liniger, E., Laibowitz, R. B., & Heinz, T. F. (2012, April). The effect of voltage bias stress on temperature-dependent conduction properties of low-κ dielectrics. In 2012 I.E. International Reliability Physics Symposium (IRPS) (pp. BD.1.1–BD.1.6). Piscataway, NJ: IEEE.

    Google Scholar 

  • Book, G. W., Pfeifer, K., & Smith, S. (2002). Barrier integrity testing of Ta using triangular voltage sweep and a novel CV-BTS test structure. Microelectronic Engineering, 64(1), 255–260.

    Article  Google Scholar 

  • Borja, J., Plawsky, J. L., Lu, T. M., Bakhru, H., & Gill, W. N. (2014a). Current leakage relaxation and charge trapping in ultra-porous low-κ materials. Journal of Applied Physics, 115(8), 084107–084107.6.

    Article  Google Scholar 

  • Borja, J., Plawsky, J. L., Lu, T. M., Gill, W. N., Shaw, T. M., Laibowitz, R. B., … Bonilla, G. (2014b). Detection of charge carrier confinement into mobile ionic defects in nanoporous dielectric films for advanced interconnects. Journal of Vacuum Science & Technology A, 32(5), 051508.

    Google Scholar 

  • Borja, J., Plawsky, J. L., Lu, T. M., & Gill, W. N. (2013). On the dynamics of Cu ions injection into low-κ nanoporous materials under oscillating applied fields. Journal of Applied Physics, 113(3), 034104–034104.7.

    Article  Google Scholar 

  • Chen, R. (2003). Apparent stretched-exponential luminescence decay in crystalline solids. Journal of Luminescence, 102, 510–518.

    Article  Google Scholar 

  • Chen, X., Henderson, B., & O’Donnell, K. P. (1992). Luminescence decay in disordered low‐dimensional semiconductors. Applied Physics Letters, 60(21), 2672–2674.

    Article  Google Scholar 

  • Cui, H., & Burke, P. A. (2004). Time-dependent dielectric breakdown of hydrogenated silicon carbon nitride thin films under the influence of copper ions. Applied Physics Letters, 84(14), 2629–2631.

    Article  Google Scholar 

  • Ginger, D. S., & Greenham, N. C. (2000). Charge injection and transport in films of CdSe nanocrystals. Journal of Applied Physics, 87(3), 1361–1368.

    Article  Google Scholar 

  • Gischia, G. G., Croes, K., Groeseneken, G., Tokei, Z., Afanas' ev, V., & Zhao, L. (2010, May). Study of leakage mechanism and trap density in porous low-κ materials. In 2010 I.E. International Reliability Physics Symposium (IRPS) (pp. 549–555). Piscataway, NJ: IEEE.

    Google Scholar 

  • Haase, G. S. (2009). A model for electric degradation of interconnect low-κ dielectrics in microelectronic integrated circuits. Journal of Applied Physics, 105(4), 044908–044908.10.

    Article  Google Scholar 

  • Haase, G. S., Ogawa, E. T., & McPherson, J. W. (2005). Reliability analysis method for low-κ interconnect dielectrics breakdown in integrated circuits. Journal of Applied Physics, 98(3), 034503–034503.8.

    Article  Google Scholar 

  • Hamill, W. H., & Funabashi, K. (1977). Kinetics of electron trapping reactions in amorphous solids; A non-Gaussian diffusion model. Physical Review B, 16(12), 5523–5227.

    Article  Google Scholar 

  • Lundstrom, M. (2009). Fundamentals of carrier transport. Cambridge: Cambridge University Press.

    Google Scholar 

  • Macdonald, J. R. (1997). Limiting electrical response of conductive and dielectric systems, stretched-exponential behavior, and discrimination between fitting models. Journal of Applied Physics, 82(8), 3962–3971.

    Article  Google Scholar 

  • Mauckner, G., Thonke, K., Baier, T., Walter, T., & Sauer, R. (1994). Temperature‐dependent lifetime distribution of the photoluminescence S‐band in porous silicon. Journal of Applied Physics, 75(8), 4167–4170.

    Article  Google Scholar 

  • Pavesi, L. (1996). Influence of dispersive exciton motion on the recombination dynamics in porous silicon. Journal of Applied Physics, 80(1), 216–225.

    Article  Google Scholar 

  • Pavesi, L., & Ceschini, M. (1993). Stretched-exponential decay of the luminescence in porous silicon. Physical Review B, 48, 95781–17628.

    Article  Google Scholar 

  • Phillips, J. C. (1996). Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 59(9), 1133–1207.

    Article  Google Scholar 

  • Phillips, J. C. (2006). Axiomatic theories of ideal stretched exponential relaxation (SER). Journal of Non-Crystalline Solids, 352(42), 4490–4494.

    Article  Google Scholar 

  • Phillips, J. C. (2011). Microscopic aspects of stretched exponential relaxation (SER) in homogeneous molecular and network glasses and polymers. Journal of Non-Crystalline Solids, 357(22), 3853–3865.

    Article  Google Scholar 

  • Romanov, V. P. (1982). Stationary distribution of mobile ions in a dielectric with regard to their elastic interaction with the medium. Physica Status Solidi (a), 70(2), 525–532.

    Article  Google Scholar 

  • Scher, H., & Montroll, E. W. (1975). Anomalous transit-time dispersion in amorphous solids. Physical Review B, 12(6), 2455–2477.

    Article  Google Scholar 

  • Scher, H., Shlesinger, M. F., & Bendler, J. T. (1991). Time-scale invariance in transport and relaxation. Physics Today, 44(1), 26–34.

    Article  Google Scholar 

  • Shlesinger, M. F., & Montroll, E. W. (1984). On the Williams—Watts function of dielectric relaxation. Proceedings of the National Academy of Sciences, 81(4), 1280–1283.

    Article  Google Scholar 

  • Wolters, D. R., & Van Der Schoot, J. J. (1985). Kinetics of charge trapping in dielectrics. Journal of Applied Physics, 58(2), 831–837.

    Article  Google Scholar 

  • Wong, B. P., et al. (2005). Nano-CMOS circuit and physical design. Hoboken, NJ: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Borja, J.P., Lu, TM., Plawsky, J. (2016). Kinetics of Charge Carrier Confinement in Thin Dielectrics. In: Dielectric Breakdown in Gigascale Electronics. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-43220-5_6

Download citation

Publish with us

Policies and ethics