Skip to main content

Performance-Limiting Traps in GaN-Based HEMTs: From Native Defects to Common Impurities

  • Chapter
  • First Online:
Power GaN Devices

Abstract

This chapter describes the properties of the performance-limiting defects in GaN-based transistors. The first part of the chapter summarizes the properties of the most common defects in GaN, by describing a database of defects that has been prepared by our group based on a collection of more than 80 papers on the topic. The second part of the chapter describes the results of our most recent experiments on the impact of common native defects (vacancies, surface states, etc.) and impurities (such as Fe and C) on the dynamic performance of GaN HEMTs. Information on the correlation between epitaxial structure, process quality, and dynamic performance is given in the text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Umana-Membreno GA, Dell JM, Hessler TP, Nener BD, Parish G, Faraone L, Mishra UK (2002) 60Co gamma-irradiation-induced defects in n-GaN. Appl Phys Lett 80(23):4354–4356

    Article  Google Scholar 

  2. Soh CB, Chua SJ, Lim HF, Chi DZ, Liu W, Tripathy S (2004) Identification of deep levels in GaN associated with dislocations. J Phys Condens Matter 16(16):6305–6315

    Article  Google Scholar 

  3. Chung HM, Chuang WC, Pan YC, Tsai CC, Lee MC, Chen WH, Chen WK, Chiang CI, Lin CH, Chang H (2000) Electrical characterization of isoelectronic In-doping effects in GaN films grown by metalorganic vapor phase epitaxy. Appl Phys Lett 76(7):897–899

    Article  Google Scholar 

  4. Park YS, Lee M, Jeon K, Yoon IT, Shon Y, Im H, Park CJ, Cho HY, Han M-S (2010) Deep level transient spectroscopy in plasma-assisted molecular beam epitaxy grown Al 0.2 Ga 0.8 N/GaN interface and the rapid thermal annealing effect. Appl Phys Lett 97:112110

    Article  Google Scholar 

  5. Look DC, Fang Z-Q, Claflin B (2005) Identification of donors, acceptors, and traps in bulk-like HVPE GaN. J Cryst Growth 281(1):143–150

    Article  Google Scholar 

  6. Cho HK, Kim KS, Hong CH, Lee HJ (2001) Electron traps and growth rate of buffer layers in unintentionally doped GaN. J Cryst Growth 223(1–2):38–42

    Article  Google Scholar 

  7. Johnstone D, Biyikli S, Dogan S, Moon YT, Yun F, Morkoc H (2005) Comparison of deep levels in GaN grown by MBE, MOCVD, and HVPE. Proc SPIE—Light Diodes Res Manuf Appl IX 5739:7–15

    Google Scholar 

  8. Fang Z, Look DC, Kim W, Fan Z (1998) Deep centers in n-GaN grown by reactive molecular beam epitaxy. Appl Phys Lett 72(18):2277–2279

    Article  Google Scholar 

  9. Cho HK, Kim CS, Hong CH (2003) Electron capture behaviors of deep level traps in unintentionally doped and intentionally doped n-type GaN. J Appl Phys 94(3):1485–1489

    Article  Google Scholar 

  10. Choi KJ, Jang HW, Lee JL (2003) Observation of inductively coupled-plasma-induced damage on n-type GaN using deep-level transient spectroscopy. Appl Phys Lett 82:1233–1235

    Article  Google Scholar 

  11. Arehart AR, Corrion A, Poblenz C, Speck JS, Mishra UK, DenBaars SP, Ringel SA (2008) Comparison of deep level incorporation in ammonia and rf-plasma assisted molecular beam epitaxy n-GaN films. Phys Status Solidi Curr Top Solid State Phys 5(6):1750–1752

    Google Scholar 

  12. Honda U, Yamada Y, Tokuda Y, Shiojima K (2012) Deep levels in n-GaN doped with carbon studied by deep level and minority carrier transient spectroscopies. Jpn J Appl Phys 51:04DF04–1–04DF04–4

    Google Scholar 

  13. Cho HK, Khan FA, Adesida I, Fang Z-Q, Look DC (2008) Deep level characteristics in n-GaN with inductively coupled plasma damage. J Phys D Appl Phys 41:155314

    Article  Google Scholar 

  14. Arehart AR, Homan T, Wong MH, Poblenz C, Speck JS, Ringel SA (2010) Impact of N- and Ga-face polarity on the incorporation of deep levels in n-type GaN grown by molecular beam epitaxy. Appl Phys Lett 96:242112

    Google Scholar 

  15. Chen S, Honda U, Shibata T, Matsumura T, Tokuda Y, Ishikawa K, Hori M, Ueda H, Uesugi T, Kachi T (2012) As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN. J Appl Phys 112:053513

    Article  Google Scholar 

  16. Kindl D, Hubík P, Krištofik J, Mareš JJ, Vyborny Z, Leys MR, Boeykens S (2009) Deep defects in GaN/AlGaN/SiC heterostructures. J Appl Phys 105:093706

    Article  Google Scholar 

  17. Umana-Membreno GA, Parish G, Fichtenbaum N, Keller S, Mishra UK, Nener BD (2007) Electrically active defects in GaN layers grown with and without Fe-doped buffers by metal-organic chemical vapor deposition. J Electron Mater 37(5):569–572

    Article  Google Scholar 

  18. Stuchlíková L, Šebok J, Rybár J, Petrus M, Nemec M, Harmatha L, Benkovská J, Kováč J, Škriniarová J, Lalinský T, Paskiewicz R, Tlaczala M (2010) Investigation of deep energy levels in heterostructures based on GaN by DLTS. In: Proceedings of the 8th international conference on advanced semiconductor devices and microsystems (ASDAM), pp 135–138

    Google Scholar 

  19. Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K, Miyake K (1994) Analysis of deep levels in n-type GaN by transient capacitance methods. J Appl Phys 76(1):304–309

    Article  Google Scholar 

  20. Fang ZQ, Polenta L, Hemsky JW, Look DC (2000) Deep centers in as-grown and electron-irradiated n-GaN. In: IEEE semiconducting and semi-insulating materials conference (SIMC), pp 35–42

    Google Scholar 

  21. Asghar M, Muret P, Beaumont B, Gibart P (2004) Field dependent transformation of electron traps in GaN p–n diodes grown by metal–organic chemical vapour deposition. Mater Sci Eng, B 113(3):248–252

    Article  Google Scholar 

  22. Calleja E, Sánchez FJ, Basak D, Sánchez-García MA, Muñoz E, Izpura I, Calle F, Tijero JMG, Sánchez-Rojas JL, Beaumont B, Lorenzini P, Gibart P (1997) Yellow luminescence and related deep states in undoped GaN. Phys Rev B 55(7):4689–4694

    Article  Google Scholar 

  23. Zhang Z, Hurni CA, Arehart AR, Yang J, Myers RC, Speck JS, Ringel SA (2012) Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy. Appl Phys Lett 100:052114

    Article  Google Scholar 

  24. Polyakov AY, Smirnov NB, Govorkov AV, Shlensky AA, Pearton SJ (2004) Influence of high-temperature annealing on the properties of Fe doped semi-insulating GaN structures. J Appl Phys 95(10):5591–5596

    Article  Google Scholar 

  25. Hierro A, Ringel SA, Hansen M, Speck JS, Mishra UK, DenBaars SP (2000) Hydrogen passivation of deep levels in n–GaN. Appl Phys Lett 77(10):1499–1501

    Article  Google Scholar 

  26. Henry TA, Armstrong A, Kelchner KM, Nakamura S, Denbaars SP, Speck JS (2012) Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett 100:082103

    Article  Google Scholar 

  27. Fang ZQ, Look DC, Kim DH, Adesida I (2005) Traps in AlGaNGaNSiC heterostructures studied by deep level transient spectroscopy. Appl Phys Lett 87:182115

    Article  Google Scholar 

  28. Lee WI, Huang TC, Guo JD, Feng MS (1995) Effects of column III alkyl sources on deep levels in GaN grown by organometallic vapor phase epitaxy. Appl Phys Lett 67:1721–1723

    Article  Google Scholar 

  29. Wang CD, Yu LS, Lau SS, Yu ET, Kim W (1998) Deep level defects in n-type GaN grown by molecular beam epitaxy. Appl Phys Lett 72(10):1211–1213

    Article  Google Scholar 

  30. Caesar M, Dammann M, Polyakov V, Waltereit P, Bronner W, Baeumler M, Quay R, Mikulla M, Ambacher O (2012) Generation of traps in AlGaN/GaN HEMTs during RF-and DC-stress test. IEEE Int Reliab Phys Symp Proc CD 6.1–CD 6.5

    Google Scholar 

  31. Hacke P, Nakayama H, Detchprohm T, Hiramatsu K, Sawaki N (1996) Deep levels in the upper bandgap region of lightly Mg-doped GaN deep levels in the upper band-gap region of lightly Mg-doped GaN. Appl Phys Lett 68(10):1362–1364

    Article  Google Scholar 

  32. Sasikumar A, Arehart A, Kolluri S, Wong MH, Keller S, Denbaars SP, Speck JS, Mishra UK, Ringel SA (2012) Access-region defect spectroscopy of DC-stressed N-polar GaN MIS-HEMTs. IEEE Electron Device Lett 33(5):658–660

    Article  Google Scholar 

  33. Chen XD, Huang Y, Fung S, Beling CD, Ling CC, Sheu JK, Lee ML, Chi GC, Chang SJ (2003) Deep level defect in Si-implanted GaN n(+)-p junction. Appl Phys Lett 82(21):3671–3673

    Article  Google Scholar 

  34. Sasikumar A, Arehart A, Ringel SA, Kaun S, Wong MH, Mishra UK, Speck JS (2012) Direct correlation between specific trap formation and electric stress-induced degradation in MBE-grown AlGaN/GaN HEMTs. IEEE Int Reliab Phys Symp Proc 2C 3.1–2C 3.6

    Google Scholar 

  35. Meneghini M, Bisi D, Marcon D, Stoffels S, Van Hove M, Wu T-L, Decoutere S, Meneghesso G, Zanoni E (2014) Trapping and reliability assessment in D-mode GaN-based MIS-HEMTs for power applications. IEEE Trans Power Electron 29(5):2199–2207

    Article  Google Scholar 

  36. Lyons JL, Janotti A, Van de Walle CG (2014) Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys Rev B 89:035204

    Article  Google Scholar 

  37. Arehart AR, Sasikumar A, Via GD, Winningham B, Poling B, Heller E, Ringel SA (2010) Spatially-discriminating trap characterization methods for HEMTs and their application to RF-stressed AlGaN/GaN HEMTs. Tech Dig Int Electron Devices Meet (IEDM) 464–467

    Google Scholar 

  38. Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer BK (1997) Excited states of Fe3+ in GaN. Phys Rev B 55(7):4382–4387

    Article  Google Scholar 

  39. Aggerstam T, Pinos A, Marcinkevičius S, Linnarsson M, Lourdudoss S (2007) Electron and hole capture cross-sections of Fe acceptors in GaN: Fe epitaxially grown on sapphire. J Electron Mater 36(12):1621–1624

    Article  Google Scholar 

  40. Cardwell DW, Sasikumar A, Arehart AR, Kaun SW, Lu J, Keller S, Speck JS, Mishra UK, Ringel SA, Pelz JP (2013) Spatially-resolved spectroscopic measurements of Ec − 0.57 eV traps in AlGaN/GaN high electron mobility transistors. Appl Phys Lett 102:193509

    Article  Google Scholar 

  41. Silvestri M, Uren MJ, Kuball M (2013) Iron-induced deep-level acceptor center in GaN/AlGaN high electron mobility transistors: Energy level and cross section. Appl Phys Lett 102:073501

    Article  Google Scholar 

  42. Verzellesi G, Mazzanti A, Canali C, Meneghesso G, Chini A, Zanoni E (2003) Study on the origin of dc-to-RF dispersion effects in GaAs- and GaN-based heterostructure FETs. Reliab Work Compd Semicond 155–156

    Google Scholar 

  43. Auret FD, Meyer WE, Wu L, Hayes M, Legodi MJ, Beaumont B, Gibart P (2004) Electrical characterisation of hole traps in n-type GaN. Phys Status Solidi C Conf 201(10):2271–2276

    Article  Google Scholar 

  44. Ibbetson JP, Fini PT, Ness KD, DenBaars SP, Speck JS, Mishra UK (2000) Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett 77(2):250–252

    Article  Google Scholar 

  45. Binari SC, Ikossi K, Roussos JA, Kruppa W, Park D, Dietrich HB, Koleske DD, Wickenden AE, Henry RL (2001) Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans Electron Devices 48(3):465–471

    Article  Google Scholar 

  46. Vetury R, Zhang NQQ, Keller S, Mishra UK (2001) The impact of surface states on the DC and RF characteristics of A1GaN/GaN HFETs. IEEE Trans Electron Devices 48(3):560–566

    Article  Google Scholar 

  47. Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A, Mishra UK, Canali C, Zanoni E (2004) Surface-related drain current dispersion effects in AlGaN-GaN HEMTs. IEEE Trans Electron Devices 51(10):1554–1561

    Article  Google Scholar 

  48. Green BM, Chu KK, Chumbes EM, Smart JA, Shealy JR, Eastman LF (2000) The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT’ s. IEEE Electron Device Lett 21(6):268–270

    Article  Google Scholar 

  49. Vertiatchikh AV, Eastman LF, Schaff WJ, Prunty T (2002) Effect of surface passivation of AIGaN/GaN heterostructure field-effect transistorl. Electron Lett 38(8):388–389

    Article  Google Scholar 

  50. Koley G, Tilak V, Eastman LF, Spencer MG (2003) Slow transients observed in AlGaN/GaN HFETs: Effects of SiNx passivation and UV illumination. IEEE Trans Electron Devices 50(4):886–893

    Article  Google Scholar 

  51. Tilak V, Green B, Kim H, Dimitrov R, Smart J, Schaff WJ, Shealy JR, Eastman LF (2000) Effect of passivation on AlGaN/GaN HEMT device performance. In: 2000 IEEE international symposium on compound semiconductors. Proceedings of the IEEE twenty-seventh international symposium on compound semiconductors (Cat. No.00TH8498), pp 357–363

    Google Scholar 

  52. Hasegawa H, Akazawa M (2009) Current collapse transient behavior and its mechanism in submicron-gate AlGaN∕GaN heterostructure transistors. J Vac Sci Technol B Microelectron Nanom Struct 27:2048–2054

    Google Scholar 

  53. Kotani J, Tajima M, Kasai S, Hashizume T (2007) Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures. Appl Phys Lett 91:093501

    Article  Google Scholar 

  54. Sabuktagin S, Moon YT, Dogan S, Baski AA, Morkoç H (2006) Observation of surface charging at the edge of a Schottky contact. IEEE Electron Device Lett 27(4):211–213

    Article  Google Scholar 

  55. Heikman S, Keller S, Denbaars SP, Mishra UK (2002) Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition. Appl Phys Lett 81(3):439–441

    Article  Google Scholar 

  56. Uren MJ, Nash KJ, Balmer RS, Martin T, Morvan E, Caillas N, Delage SL, Ducatteau D, Grimbert B, De Jaeger JC (2006) Punch-through in short-channel AlGaN/GaN HFETs. IEEE Trans Electron Devices 53(2):395–398

    Article  Google Scholar 

  57. Uren MJ, Kuball M (2014) GaN transistor reliability and instabilities. In: 2014 10th International Conference on advanced semiconductor devices microsystems (ASDAM), Smolenice

    Google Scholar 

  58. Lee W, Ryou JH, Yoo D, Limb J, Dupuis RD, Hanser D, Preble E, Williams NM, Evans K (2007) Optimization of Fe doping at the regrowth interface of GaN for applications to III-nitride-based heterostructure field-effect transistors. Appl Phys Lett 90:093509

    Article  Google Scholar 

  59. Desmaris V, Rudziñski M, Rorsman N, Hageman PR, Larsen PK, Zirath H, Rödle TC, Jos HFF (2006) Comparison of the DC and microwave performance of AlGaN/GaN HEMTs grown on SiC by MOCVD with Fe-doped or unintentionally doped GaN buffer layers. IEEE Trans Electron Devices 53(9):2413–2417

    Article  Google Scholar 

  60. Uren MJ, Hayes DG, Balmer RS, Wallis DJ, Hilton KP, Maclean JO, Martin T, Roff C, Mcgovern P, Benedikt J, Tasker PJ (2006) Control of short-channel effects in GaN/AlGaN HFETs. In: Proceedings of the 1st European microwave integrated circuits conference, pp 65–68

    Google Scholar 

  61. Bougrioua Z, Azize M, Lorenzini P, Laügt M, Haas H (2005) Some benefits of Fe doped less dislocated GaN templates for AlGaN/GaN HEMTs grown by MOVPE. Phys Status Solidi Appl Mater Sci 202(4):536–544

    Article  Google Scholar 

  62. Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G, Zanoni E (2014) Buffer traps in Fe-doped AlGaN/GaN HEMTs: investigation of the physical properties based on pulsed and transient measurements. IEEE Trans Electron Devices 61(12):4070–4077

    Article  Google Scholar 

  63. Umana-Membreno GA, Parish G, Fichtenbaum N, Keller S, Mishra UK, Nener BD (2008) Electrically active defects in GaN layers grown with and without Fe-doped buffers by metal-organic chemical vapor deposition. J Electron Mater 37(5):569–572

    Article  Google Scholar 

  64. Polyakov AY, Smirnov NB, Govorkov AV, Pearton SJ (2003) Electrical and optical properties of Fe-doped semi-insulating GaN templates. Appl Phys Lett 83(16):3314–3316

    Article  Google Scholar 

  65. Bisi D, Meneghini M, De Santi C, Chini A, Dammann M, Bruckner P, Mikulla M, Meneghesso G, Zanoni E (2013) Deep-level characterization in GaN HEMTs-Part I: advantages and limitations of drain current transient measurements. IEEE Trans Electron Devices 60(10):3166–3175

    Article  Google Scholar 

  66. Chini A, Di Lecce V, Soci F, Bisi D, Stocco A, Meneghini M, Meneghesso G, Zanoni E, Gasparotto A (2012) Experimental and numerical correlation between current-collapse and Fe-doping profiles in GaN HEMTs. IEEE Int Reliab Phys Symp Proc CD 2.1–CD 2.4

    Google Scholar 

  67. Uren MJ, Moreke J, Kuball M (2012) Buffer design to minimize current collapse in GaN/AlGaN HFETs. IEEE Trans Electron Devices 59(12):3327–3333

    Article  Google Scholar 

  68. Polyakov AY, Smirnov NB, Govorkov AV, Markov AV, Sun Q, Zhang Y, Yerino CD, Ko TS, Lee IH, Han J (2010) Electrical properties and deep traps spectra of a-plane GaN films grown on r-plane sapphire. Mater Sci Eng B Solid-State Mater Adv Technol 166:220–224

    Google Scholar 

  69. Haase D, Schmid M, Kürner W, Dörnen A, Härle V, Scholz F, Burkard M, Schweizer H (1996) Deep-level defects and n-type-carrier concentration in nitrogen implanted GaN. Appl Phys Lett 69(17):2525–2527

    Article  Google Scholar 

  70. Armstrong A, Arehart AR, Moran B, DenBaars SP, Mishra UK, Speck JS, Ringel SA (2004) Impact of carbon on trap states in n-type GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett 84(3):374–376

    Article  Google Scholar 

  71. Rudziński M, Desmaris V, Van Hal PA, Weyher JL, Hageman PR, Dynefors K, Rödle TC, Jos HFF, Zirath H, Larsen PK (2006) Growth of Fe doped semi-insulating GaN on sapphire and 4H-SiC by MOCVD. Phys Status Solidi Curr Top Solid State Phys 3(6):2231–2236

    Google Scholar 

  72. Mei F, Fu QM, Peng T, Liu C, Peng MZ, Zhou JM (2008) Growth and characterization of AlGaN/GaN heterostructures on semi-insulating GaN epilayers by molecular beam epitaxy. J Appl Phys 103:094502

    Article  Google Scholar 

  73. Wang M, Yan D, Zhang C, Xie B, Wen CP, Wang J, Hao Y, Wu W, Shen B (2014) Investigation of surface- and buffer-induced current collapse in GaN high-electron mobility transistors using a soft switched pulsed I-V measurement. IEEE Electron Device Lett 35(11):1094–1096

    Article  Google Scholar 

  74. Meneghini M, Bisi D, Marcon D, Stoffels S, Van Hove M, Wu TL, Decoutere S, Meneghesso G, Zanoni E (2014) Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons. Appl Phys Lett 104:143505

    Article  Google Scholar 

  75. Meneghini M, Rossetto I, Bisi D, Stocco A, Cester A, Meneghesso G, Zanoni E, Chini A, Pantellini A, Lanzieri C (2014) Role of buffer doping and pre-existing trap states in the current collapse and degradation of AlGaN/GaN HEMTs. IEEE Int Reliab Phys Symp Proc 6C 6.1–6C 6.7

    Google Scholar 

  76. Bisi D, Chini A, Soci F, Stocco A, Meneghini M, Pantellini A, Nanni A, Lanzieri C, Gamarra P, Lacam C, Tordjman M, Meneghesso G, Zanoni E (2015) Hot-electron degradation of AlGaN/GaN high-electron mobility transistors during RF operation: correlation with GaN buffer design. IEEE Electron Device Lett 36(10):1011–1014

    Article  Google Scholar 

  77. Parish G, Keller S, Denbaars SP, Mishra UK (2000) SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1−xN. J Electron Mater 29(1):15–20

    Article  Google Scholar 

  78. Koleske DD, Wickenden AE, Henry RL, Twigg ME (2002) Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN. J Cryst Growth 242:55–69

    Article  Google Scholar 

  79. Wickenden AE, Koleske DD, Henry RL, Twigg ME, Fatemi M (2004) Resistivity control in unintentionally doped GaN films grown by MOCVD. J Cryst Growth 260:54–62

    Article  Google Scholar 

  80. Brunner F, Bahat-Treidel E, Cho M, Netzel C, Hilt O, Würfl J, Weyers M (2011) Comparative study of buffer designs for high breakdown voltage AlGaNGaN HFETs. Phys Status Solidi Curr Top Solid State Phys 8(7–8):2427–2429

    Google Scholar 

  81. Chen JT, Forsberg U, Janzén E (2013) Impact of residual carbon on two-dimensional electron gas properties in AlxGa1-xN/GaN heterostructure. Appl Phys Lett 102:193506

    Article  Google Scholar 

  82. Gamarra P, Lacam C, Tordjman M, Splettstösser J, Schauwecker B, Di Forte-Poisson MA (2015) Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT structures. J Cryst Growth 414:232–236

    Article  Google Scholar 

  83. Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra UK, Speck JS (2004) Effect of carbon doping on buffer leakage in AlGaN/GaN high electron mobility transistors. J Vac Sci Technol B Microelectron Nanom Struct 22(3):1145–1149

    Google Scholar 

  84. Wang WZ, Selvaraj SL, Win KT, Dolmanan SB, Bhat T, Yakovlev N, Tripathy S, Lo GQ (2015) Effect of carbon doping and crystalline quality on the vertical breakdown characteristics of GaN layers grown on 200-mm silicon substrates. J Electron Mater 44(10):3272–3276

    Article  Google Scholar 

  85. Kim D-S, Won C-H, Kang H-S, Kim Y-J, Kim YT, Kang IM, Lee J-H (2015) Growth and characterization of semi-insulating carbon-doped/undoped GaN multiple-layer buffer. Semicond Sci Technol 30:035010

    Article  Google Scholar 

  86. Bahat-treidel E, Brunner F, Hilt O, Cho E, Würfl J, Tränkle G (2010) AlGaN/GaN/GaN: C back-barrier HFETsWith breakdown voltage of over 1 kV and low RON×A. IEEE Trans Electron Devices 57(11):3050–3058

    Article  Google Scholar 

  87. Meneghesso G, Meneghini M, Zanoni E (2013) GaN-based power HEMTs, parasitic, reliability and high field issues. 224th ECS Meet

    Google Scholar 

  88. Bahat-Treidel E, Hilt O, Brunner F, Pyka S, Wurfl J (2014) Systematic study o f GaN based power transistors’ dynamic on-state resistance at elevated temperatures. Int Symp Compd Semicond

    Google Scholar 

  89. Rossetto I, Rampazzo F, Meneghini M, Silvestri M, Dua C, Gamarra P, Aubry R, Di Forte-Poisson MA, Patard O, Delage SL, Meneghesso G, Zanoni E (2014) Influence of different carbon doping on the performance and reliability of InAlN/GaN HEMTs. Microelectron Reliab 54:2248–2252

    Article  Google Scholar 

  90. Huber M, Silvestri M, Knuuttila L, Pozzovivo G, Andreev A, Kadashchuk A, Bonanni A, Lundskog A (2015) Impact of residual carbon impurities and gallium vacancies on trapping effects in AlGaN/GaN metal insulator semiconductor high electron mobility transistors. Appl Phys Lett 107:032106

    Article  Google Scholar 

  91. Bisi D, Stocco A, Rossetto I, Meneghini M, Rampazzo F, Chini A, Soci F, Pantellini A, Lanzieri C, Gamarra P, Lacam C, Tordjman M, Di Forte-Poisson MA, De Salvador D, Bazzan M, Meneghesso G, Zanoni E (2015) Effects of buffer compensation strategies on the electrical performance and RF reliability of AlGaN/GaN HEMTs. Microelectron Reliab 55:1662–1666

    Article  Google Scholar 

  92. Wright AF (2002) Substitutional and interstitial carbon in wurtzite GaN. J Appl Phys 92(5):2575–2585

    Article  Google Scholar 

  93. Lyons JL, Janotti A, Van De Walle CG (2010) Carbon impurities and the yellow luminescence in GaN. Appl Phys Lett 97:152108

    Article  Google Scholar 

  94. Armstrong A, Arehart AR, Green D, Mishra UK, Speck JS, Ringel SA (2005) Impact of deep levels on the electrical conductivity and luminescence of gallium nitride codoped with carbon and silicon. J Appl Phys 98:053704

    Article  Google Scholar 

  95. Armstrong A, Arehart AR, Moran B, DenBaars SP, Mishra UK, Speck JS, Ringel SA (2003) In 30th international symposium on compound semiconductor. San Diego, USA, p 42

    Google Scholar 

  96. Fang ZQ, Claflin B, Look DC, Green DS, Vetury R (2010) Deep traps in AlGaN/GaN heterostructures studied by deep level transient spectroscopy: effect of carbon concentration in GaN buffer layers. J Appl Phys 108:063706

    Article  Google Scholar 

  97. Uren MJ, Silvestri M, Casar M, Hurkx GAM, Croon JA, Sonsky J, Kuball M (2014) Intentionally carbon-doped AlGaN/GaN HEMTs: necessity for vertical leakage paths. IEEE Electron Device Lett 35(3):327–329

    Article  Google Scholar 

  98. Bisi D, Meneghini M, Van Hove M, Marcon D, Stoffels S, Wu TL, Decoutere S, Meneghesso G, Zanoni E (2015) Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate. Phys Status Solidi Appl Mater Sci 212(5):1122–1129

    Article  Google Scholar 

  99. Van Hove M, Boulay S, Bahl SR, Stoffels S, Kang X, Wellekens D, Geens K, Delabie A, Decoutere S (2012) CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. Electron Device Lett IEEE 33(5):667–669

    Article  Google Scholar 

  100. Bisi D, Meneghini M, Marino FA, Marcon D, Stoffels S, Van Hove M, Decoutere S, Meneghesso G, Zanoni E (2014) Kinetics of buffer-related RON-increase in GaN-on-Silicon MISHEMTs. IEEE Electron Device Lett 35(10):1004–1006

    Article  Google Scholar 

  101. Pérez-Tomàs A, Fontseré A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno JC, Cordier Y (2013) Analysis of the AlGaN/GaN vertical bulk current on Si, sapphire, and free-standing GaN substrates. J Appl Phys 113:174501

    Article  Google Scholar 

  102. Zhou C, Jiang Q, Huang S, Chen KJ (2012) Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si devices. In: Proceedings of the 24th international symposium on power semiconductor devices ICs 3–7 June 2012. Bruges, Belgium, pp 1132–1134

    Google Scholar 

  103. Tanaka K, Ishida M, Ueda T, Tanaka T (2013) Effects of deep trapping states at high temperatures on transient performance of AlGaN/GaN heterostructure field-effect transistors. Jpn J Appl Phys 52:04CF07–1–04CF07–5

    Google Scholar 

  104. Meneghini M, Vanmeerbeek P, Silvestri R, Dalcanale S, Banerjee A, Bisi D, Zanoni E, Meneghesso G, Moens P (2015) Temperature-dependent dynamic RON in GaN-based MIS-HEMTs: role of surface traps and buffer leakage. IEEE Trans Electron Devices 62(3):782–787

    Article  Google Scholar 

  105. Moens P, Vanmeerbeek P, Banerjee A, Guo J, Liu C, Coppens P, Salih A, Tack M, Caesar M, Uren MJ, Kuball M, Meneghini M, Meneghesso G, Zanoni E (2015) On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650 V GaN power devices. Proc Int Symp Power Semicond Devices ICs 37–40

    Google Scholar 

  106. Kwan MH, Wong K, Lin YS, Yao FW, Tsai MW, Chang Y, Chen PC, Su RY, Wu C, Yu JL, Yang FJ, Lansbergen GP, Wu H, Lin M, Wu CB, Lai Y, Hsiung C, Liu P, Chiu H, Chen C, Yu CY, Lin HS, Chang M, Wang S, Chen LC, Tsai JL, Tuan HC, Kalnitsky A (2014) CMOS-compatible GaN-on-Si field-effect transistors for high voltage power applications. Electron Devices Meet (IEDM) IEEE Int 17.6.1–17.6.4

    Google Scholar 

  107. Uren MJ, Caesar M, Karboyan S, Moens P, Vanmeerbeek P, Kuball M (2015) Electric field reduction in C—doped AlGaN/ GaN on Si high electron mobility transistors. Electron Device Lett IEEE 36(8):826–828

    Article  Google Scholar 

  108. Stoffels S, Zhao M, Venegas R, Kandaswamy P, You S, Novak T, Saripalli Y, Van Hove M, Decoutere S (2015) The physical mechanism of dispersion caused by AlGaN/GaN buffers on Si and optimization for low dispersion. 2015 IEEE Int Electron Devices Meet 35.4.1–35.4.4

    Google Scholar 

  109. Kaneko S, Kuroda M, Yanagihara M, Ikoshi A, Okita H, Morita T, Tanaka K, Hikita M, Uemoto Y, Takahashi S, Ueda T (2015) Current-collapse-free operations up to 850 V by GaN-GIT utilizing hole injection from drain. Proc Int Symp Power Semicond Devices ICs 41–44

    Google Scholar 

  110. Liu ZH, Ng GI, Arulkumaran S, Maung YKT, Teo KL, Foo SC, Sahmuganathan V (2010) Improved linearity for low-noise applications in 0.25-μm GaN MISHEMTs using ALD Al2O3 as gate dielectric. Electron Device Lett IEEE 31(8):803–805

    Article  Google Scholar 

  111. Wu T, Marcon D, Zahid MB, Van Hove M, Decoutere S, Groeseneken G (2013) Comprehensive investigation of on-state stress on DMode AlGaN/GaN MIS-HEMTs. Reliab Phys Symp (IRPS), 2013 IEEE Int 3C.5.1–3C.5.7

    Google Scholar 

  112. Khan MA, Simin G, Yang J, Zhang J, Koudymov A, Shur MS, Gaska R, Hu X, Tarakji A (2003) Insulating Gate III-N heterostructure field-effect transistors for high-power microwave and switching applications. IEEE Microw Theory Tech 51(2):624–633

    Article  Google Scholar 

  113. Imada T, Motoyoshi K, Kanamura M, Kikkawa T (2011) Reliability analysis of enhancement-mode GaN MIS-HEMT with gate-recess structure for power supplies. IEEE Int Integr Reliab Work Final Rep 38–41

    Google Scholar 

  114. Kordoš P, Heidelberger G, Bernát J, Fox A, Marso M, Lüth H (2005) High-power SiO2/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors. Appl Phys Lett 87:143501

    Article  Google Scholar 

  115. Hahn H, Benkhelifa F, Ambacher O, Brunner F, Noculak A, Kalisch H, Vescan A (2015) Threshold voltage engineering in GaN-based HFETs: A systematic study with the threshold voltage reaching more than 2 V. IEEE Trans Electron Devices 62(2):538–545

    Article  Google Scholar 

  116. Choi W, Ryu H, Jeon N, Lee M, Cha H-Y, Seo K-S (2014) Improvement of Vth instability in normally-off GaN MIS-HEMTs employing PEALD-SiNx as an interfacial layer. Electron Device Lett IEEE 35(1):30–32

    Article  Google Scholar 

  117. Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I (2006) Recessed-gate structure approach toward normally electronics applications. IEEE Trans Electron Devices 53(2):356–362

    Article  Google Scholar 

  118. Oka T, Nozawa T (2008) AlGaN/GaN recessed MIS-Gate HFET with high-threshold-voltage normally-off operation for power electronics applications. IEEE Electron Device Lett 29(7):668–670

    Article  Google Scholar 

  119. Xu Z, Wang J, Cai Y, Liu J, Yang Z, Li X, Wang M, Yu M, Xie B, Wu W, Ma X, Zhang J, Hao Y (2014) High temperature characteristics of GaN-based inverter integrated with enhancement-mode (E-Mode) MOSFET and depletion-mode (D-Mode) HEMT. IEEE Electron Device Lett 35(1):33–35

    Article  Google Scholar 

  120. Yatabe Z, Hori Y, Ma W-C, Asubar JT, Akazawa M, Sato T, Hashizume T (2014) Characterization of electronic states at insulator/AlGaN interfaces for improved insulated gate and surface passivation structures of GaN-based transistors. Jpn J Appl Phys 53(10):2014

    Article  Google Scholar 

  121. Zhu JJ, Ma XH, Hou B, Chen WW, Hao Y (2014) Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis. AIP Adv 4:037108

    Article  Google Scholar 

  122. Mizue C, Hori Y, Miczek M, Hashizume T (2011) Capacitance–voltage characteristics of Al2O3/AlGaN/GaN structures and state density distribution at Al2O3/AlGaN interface. Jpn J Appl Phys 50:021001

    Article  Google Scholar 

  123. Ganguly S, Verma J, Li G, Zimmermann T, Xing H, Jena D (2011) Presence and origin of interface charges at atomic-layer deposited Al 2O3/III-nitride heterojunctions. Appl Phys Lett 99:193504

    Article  Google Scholar 

  124. Lagger P, Reiner M, Pogany D, Ostermaier C (2014) Comprehensive study of the complex dynamics of forward bias-induced threshold voltage drifts in GaN based MIS-HEMTs by stress/recovery experiments. IEEE Trans Electron Devices 61(4):1022–1030

    Article  Google Scholar 

  125. Guo A, Del Alamo JA (2015) Positive-bias temperature instability (PBTI) of GaN MOSFETs. IEEE Int Reliab Phys Symp Proc 6C51–6C57

    Google Scholar 

  126. Eller BS, Yang J, Nemanich RJ (2013) Electronic surface and dielectric interface states on GaN and AlGaN. J Vac Sci Technol A Vac Surf Film 31(5):050807

    Google Scholar 

  127. Johnson DW, Lee RTP, Hill RJW, Wong MH, Bersuker G, Piner EL, Kirsch PD, Harris HR (2013) Threshold voltage shift due to charge trapping in dielectric-gated AlGaN/GaN high electron mobility transistors examined in Au-free technology. IEEE Trans Electron Devices 60(10):3197–3203

    Article  Google Scholar 

  128. Lagger P, Steinschifter P, Reiner M, Stadtmuller M, Denifl G, Naumann A, Muller J, Wilde L, Sundqvist J, Pogany D, Ostermaier C (2014) Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator-semiconductor structures under forward gate bias stress. Appl Phys Lett 105:033512

    Article  Google Scholar 

  129. Lagger P, Ostermaier C, Pobegen G, Pogany D (2012) Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs. Tech Dig Int Electron Devices Meet (IEDM) 299–302

    Google Scholar 

  130. Rossetto I, Meneghini M, Bisi D, Barbato A, Van Hove M, Marcon D, Wu TL, Decoutere S, Meneghesso G, Zanoni E (2015) Impact of gate insulator on the dc and dynamic performance of AlGaN/GaN MIS-HEMTs. Microelectron Reliab 55:1692–1696

    Article  Google Scholar 

  131. Meneghesso G, Meneghini M, Bisi D, Rossetto I, Wu TL, Van Hove M, Marcon D, Stoffels S, Decoutere S, Zanoni E (2015) Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate. Microelectron Reliab 58:151–157

    Article  Google Scholar 

  132. Lagger P, Schiffmann A, Pobegen G, Pogany D, Ostermaier C (2013) Very fast dynamics of threshold voltage drifts in GaN-based MIS-HEMTs. IEEE Electron Device Lett 34(9):1112–1114

    Article  Google Scholar 

  133. Wu TL, Marcon D, Ronchi N, Bakeroot B, You S, Stoffels S, Van Hove M, Bisi D, Meneghini M, Groeseneken G, Decoutere S (2015) Analysis of slow de-trapping phenomena after a positive gate bias on AlGaN/GaN MIS-HEMTs with in-situ Si3N4/Al2O3 bilayer gate dielectrics. Solid State Electron 103:127–130

    Article  Google Scholar 

  134. Capriotti M, Alexewicz A, Fleury C, Gavagnin M, Bethge O, Visalli D, Derluyn J, Wanzenbock HD, Bertagnolli E, Pogany D, Strasser G (2014) Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown Si3N4 and Al2O3 in AlGaN/GaN high electron mobility transistors with normally off capability. Appl Phys Lett 104:113502

    Article  Google Scholar 

  135. Lansbergen GP, Wong KY, Lin YS, Yu JL, Yang FJ, Tsai CL, Oates AS (2014) Threshold voltage drift (PBTI) in GaN D-MODE MISHEMTs: Characterization of fast trapping components. IEEE Int Reliab Phys Symp Proc 6C 4.1–6C 4.6

    Google Scholar 

  136. Grasser T (2012) Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities. Microelectron Reliab 52:39–70

    Article  Google Scholar 

  137. Ma XH, Zhu JJ, Liao XY, Yue T, Chen WW, Hao Y (2013) Quantitative characterization of interface traps in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by dynamic capacitance dispersion technique. Appl Phys Lett 103:033510

    Article  Google Scholar 

  138. Lu X, Ma J, Jiang H, May K (2014) Lau, “Characterization of in situ SiNx thin film grown on AlN/GaN heterostructure by metal-organic chemical vapor deposition”. Appl Phys Lett 104:032903

    Article  Google Scholar 

  139. Sun X, Saadat OI, Chang-Liao KS, Palacios T, Cui S, Ma TP (2013) Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of ac transconductance method. Appl Phys Lett 102:103504

    Article  Google Scholar 

  140. Huang S, Jiang Q, Yang S, Tang Z, Chen KJ (2013) Mechanism of PEALD-Grown AlN passivation for AlGaN/GaN HEMTs: compensation of interface traps by polarization charges. IEEE Electron Device Lett 34(2):193–195

    Article  Google Scholar 

  141. Yang S, Tang Z, Wong KY, Lin YS, Lu Y, Huang S, Chen KJ (2013) Mapping of interface traps in high-performance Al 2 O 3/AlGaN/GaN MIS-heterostructures using frequency- and temperature-dependent C–V techniques. Tech Dig Int Electron Devices Meet (IEDM) 6.3.1–6.3.4

    Google Scholar 

  142. Shih HA, Kudo M, Suzuki TK (2012) Analysis of AlN/AlGaN/GaN metal-insulator-semiconductor structure by using capacitance-frequency-temperature mapping. Appl Phys Lett 101:043501

    Article  Google Scholar 

  143. Matys M, Adamowicz B, Hashizume T (2012) Determination of the deep donor-like interface state density distribution in metal/Al2O3/n-GaN structures from the photocapacitance-light intensity measurement. Appl Phys Lett 101:231608

    Article  Google Scholar 

  144. Capriotti M, Lagger P, Fleury C, Oposich M, Bethge O, Ostermaier C, Strasser G, Pogany D (2015) Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states. J Appl Phys 117:024506

    Article  Google Scholar 

  145. Okino T, Ochiai M, Ohno Y, Kishimoto S, Maezawa K, Mizutani T (2004) Drain current DLTS of AlGaN-GaN MIS-HEMTs. IEEE Electron Device Lett 25(8):523–525

    Article  Google Scholar 

  146. Gaffey B, Guido LJ, Wang XW, Ma TP (2001) High-quality oxide/nitride/oxide gate insulator for GaN MIS structures. IEEE Trans Electron Devices 48(3):458–464

    Article  Google Scholar 

  147. Kanechika M, Sugimoto M, Soejima N, Ueda H, Ishiguro O, Kodama M, Hayashi E, Itoh K, Uesugi T, Kachi T (2007) A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn J Appl Phys 46(21):L503–L505

    Article  Google Scholar 

  148. Kambayashi H, Nomura T, Ueda H, Harada K, Morozumi Y, Hasebe K, Teramoto A, Sugawa S, Ohmi T (2013) High quality SiO2/Al2O3 gate stack for GaN MOSFET. Jpn J Appl Phys 52:04CF09

    Google Scholar 

  149. Tang Z, Jiang Q, Lu Y, Huang S, Yang S, Tang X, Chen KJ (2013) 600-V normally off SiNx/AlGaN/GaN MIS-HEMT with large gate swing and low current collapse. IEEE Electron Device Lett 34(11):1373–1375

    Article  Google Scholar 

  150. Robertson J, Falabretti B (2006) Band offsets of high K gate oxides on III-V semiconductors. J Appl Phys 100:014111

    Article  Google Scholar 

  151. Derluyn J, Boeykens S, Cheng K, Vandersmissen R, Das J, Ruythooren W, Degroote S, Leys MR, Germain M, Borghs G (2005) Improvement of AlGaN∕GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J Appl Phys 98:054501

    Article  Google Scholar 

  152. Van Hove M, Kang X, Stoffels S, Wellekens D, Ronchi N, Venegas R, Geens K, Decoutere S (2013) Fabrication and Performance of Au-Free AlGaN/GaN-on-silicon Power Devices with Al2O3 and Si3N4/Al2O3 Gate Dielectrics. IEEE Trans Electron Devices 60(10):3071–3078

    Article  Google Scholar 

  153. Liu S, Yang S, Tang Z, Jiang Q, Liu C, Wang M, Chen KJ (2014) Al2O3/AlN/GaN MOS-channel-HEMTs with an AlN interfacial layer. Electron Device Lett IEEE 35:723–725

    Article  Google Scholar 

  154. Kanamura M, Ohki T, Ozaki S, Nishimori M, Tomabechi S, Kotani J, Miyajima T, Nakamura N, Okamoto N, Kikkawa T, Watanabe K (2013) Suppression of threshold voltage shift for normally-Off GaN MIS-HEMT without post deposition annealing. Proc Int Symp Power Semicond Devices ICs 411–414

    Google Scholar 

  155. Hori Y, Mizue C, Hashizume T (2010) Process conditions for improvement of electrical properties of Al 2 O 3/n-GaN structures prepared by atomic layer deposition. Jpn J Appl Phys 49(8):080201

    Article  Google Scholar 

  156. Esposto M, Krishnamoorthy S, Nath DN, Bajaj S, Hung TH, Rajan S (2011) Electrical properties of atomic layer deposited aluminum oxide on gallium nitride. Appl Phys Lett 99:133503

    Article  Google Scholar 

  157. Son J, Chobpattana V, McSkimming BM, Stemmer S (2012) Fixed charge in high-k/GaN metal-oxide-semiconductor capacitor structures. Appl Phys Lett 101:102905

    Article  Google Scholar 

  158. Choi M, Janotti A, Van De Walle CG (2013) Native point defects and dangling bonds in α-Al2O3. J Appl Phys 113:044501

    Article  Google Scholar 

  159. Choi M, Lyons JL, Janotti A, Van de Walle CG (2013) Impact of native defects in high-k dielectric oxides on GaN/oxide metal-oxide-semiconductor devices. Phys Status Solidi Basic Res 250(4):787–791

    Article  Google Scholar 

  160. Liu X, Kim J, Yeluri R, Lal S, Li H, Lu J, Keller S, Mazumder B, Speck JS, Mishra UK (2013) Fixed charge and trap states of in situ Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors grown by metalorganic chemical vapor deposition. J Appl Phys 114:164507

    Article  Google Scholar 

  161. Weber JR, Janotti A, Van de Walle CG (2011) Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. J Appl Phys 109:033715

    Article  Google Scholar 

  162. Fontserè A, Pérez-Tomás A, Godignon P, Millán J, De Vleeschouwer H, Parsey JM, Moens P (2012) Wafer scale and reliability investigation of thin HfO2·AlGaN/GaN MIS-HEMTs. Microelectron Reliab 52:2220–2223

    Article  Google Scholar 

  163. Lin Y, Wong K, Lansbergen GP, Yu JL, Yu CJ, Hsiung CW, Chiu HC, Liu SD, Chen PC, Yao FW, Su RY, Chou CY, Tsai CY, Yang FJ, Tsai CL, Tsai CS, Chen X, Tuan HC, Kalnitsky A (2014) Improved trap-related characteristics on SiNx/AlGaN/GaN MISHEMTs with surface treatment. In: Proceedings of the 26th international symposium power semiconductor devices IC’s, pp 293–296

    Google Scholar 

  164. Ronchi N, De Jaeger B, Van Hove M, Roelofs R, Wu T, Hu J, Kang X, Decoutere S (2015) Combined plasma-enhanced-atomic-layer-deposition gate dielectric and in situ SiN cap layer for reduced threshold voltage shift and dynamic ON-resistance dispersion of AlGaN/GaN high electron mobility transistors on 200 mm Si substrates Combined plasma-e. Jpn J Appl Phys 54:04DF02

    Google Scholar 

  165. Choi W, Seok O, Ryu H, Cha HY, Seo KS (2014) High-voltage and low-leakage-current gate recessed normally-Off GaN MIS-HEMTs with dual gate insulator employing PEALD-SiNx/RF-sputtered-HfO2. IEEE Electron Device Lett 35(2):175–177

    Article  Google Scholar 

  166. Yuan Y, Wang L, Yu B, Shin B, Ahn J, McIntyre PC, Asbeck PM, Rodwell MJW, Taur Y (2011) A distributed model for border traps in Al2O3—inGaAs MOS devices. IEEE Electron Device Lett 32(4):485–487

    Article  Google Scholar 

  167. Tang K, Negara A, Kent T, Droopad R, Kummel AC, Mcintyre PC (2015) Border trap analysis and reduction in AL D-high-k InGaAs gate stacks. Compound Semiconductors, St. Barbar (CA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Stocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rossetto, I. et al. (2017). Performance-Limiting Traps in GaN-Based HEMTs: From Native Defects to Common Impurities. In: Meneghini, M., Meneghesso, G., Zanoni, E. (eds) Power GaN Devices. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-43199-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43199-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43197-0

  • Online ISBN: 978-3-319-43199-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics