Skip to main content

Vertical Gallium Nitride Technology

Materials, Devices and Applications

  • Chapter
  • First Online:
Power GaN Devices

Part of the book series: Power Electronics and Power Systems ((PEPS))

Abstract

The evolution of LEDs, lasers and HEMTs using gallium nitride as the semiconductor has taught us about its many unique capabilities including high breakdown electric field, polarization-induced high charge density in the channel and reliable operation at high temperature, to name a few. These superior performances due to GaN’s exceptional material properties make GaN ideal for power switching besides RF applications. Thus, power electronics got recently added to GaN’s portfolio showing great progress. Lateral HEMTs, already available as products for RF application, were the obvious first choice for designing power electronic switches. The last ten years have witnessed an incredibly fast advancement in the lateral HEMT technology building a market space for GaN in medium (up to 15 kW) power electronic applications. Although the maximum industrially feasible and economically viable limits of power conversion using the lateral GaN technology are yet to be determined, vertical devices start to look attractive for power conversion ranging above 15–20 kW. The availability of bulk GaN substrates has stimulated the development of vertical GaN technology. Vertical GaN devices, analogous to Si-DMOSFETs in some ways, can uniquely be designed with a high-mobility AlGaN/GaN channel combined to a thick-drift region in bulk GaN to offer very low on-resistance and high breakdown voltage—the two key parameters of benchmarking a power switch. While the channel of a vertical device can be designed either horizontally or vertically along the sidewalls, the peak electric fields in these devices are always buried in the bulk material, far from the surface. This allows the device to be reasonably dispersion-free without involving field plates, unlike used in lateral HEMTs. Attaining high electron mobility in bulk GaN that forms the drift region will be of key importance to outperform the competing technologies based on Si and SiC. This chapter will focus on the design space, challenges, current performance, cost and roadmap of vertical GaN devices for next-generation power conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jayant Baliga B (2008) Fundamentals of power semiconductor devices. Springer, New York

    Google Scholar 

  2. Kadavelugu A, Baliga V, Bhattacharya S, Das M, Agarwal A (2011) Zero voltage switching performance of 1200 V SiC MOSFET, 1200 V silicon IGBT and 900 V CoolMOS MOSFET. In: IEEE energy conversion congress and exposition (ECCE), Phoenix, AZ

    Google Scholar 

  3. Mishra UK, Parikh P, Wu YF (2002) AlGaN/GaN HEMTs-an overview of device operation and application. Proc IEEE 90(6):1022–1031

    Article  Google Scholar 

  4. Dora Y, Chakraborty A, McCarthy L, Keller S, Denbaars SP, Mishra UK (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett 27(9):713–715

    Article  Google Scholar 

  5. Selvaraj SL, Suzue T, Egawa T (2009) Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. IEEE Electron Device Lett 30(6):587–589

    Article  Google Scholar 

  6. Lu B, Palacios T (2010) High breakdown (>1500 V) AlGaN/GaN HEMTs by substrate-transfer technology. IEEE Electron Device Lett 31(9):951–953

    Article  Google Scholar 

  7. Chu R, Corrion A, Chen M, Ray L, Wong D, Zehnder D, Hughes B, Boutros K (2011) 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on–resistance. IEEE Electron Device Lett 32(5):632–634

    Article  Google Scholar 

  8. Chowdhury S, Mishra UK (2013) Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Trans Electron Devices 60(10):3060–3066

    Article  Google Scholar 

  9. Ben-Yaacov I, Seck Y-K, Mishra UK, Denbaars SP (2004) AlGaN/GaN current aperture vertical electron transistors with regrown channels. J Appl Phys 95(4):2073–2078

    Article  Google Scholar 

  10. Gao Y, Stonas A, Ben-Yaacov I, Mishra U, Denbaars S, Hu E (2003) AlGaN∕GaN current aperture vertical electron transistors fabricated by photoelectrochemical wet etching. Electron Lett 39(1):148

    Article  Google Scholar 

  11. Chowdhury S, Swenson BL, Mishra UK (2008) Enhancement and depletion mode AlGaN/GaN CAVET with Mg-Ion-implanted GaN as current blocking layer. IEEE Electron Device Lett 29(6):543–545

    Article  Google Scholar 

  12. Chowdhury S, Wong MH, Swenson BL, Mishra UK (2012) CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett 33(1):41–43

    Article  Google Scholar 

  13. Kanechika M, Sugimoto M, Soeima N, Ueda H, Ishiguro O, Kodama M, Hayashi E, Itoh K, Uesugi T, Kachi T (2007) A vertical insulated gate AlGaN/GaN heterojunction field effect transistor. Jpn J Appl Phys 46(21):L503–L505

    Article  Google Scholar 

  14. Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H (2008) Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates. Appl Phys Express 1:011105-1–011105-3

    Google Scholar 

  15. Nie H, Diduck Q, Alvarez B, Edwards A, Kayes B, Zhang M, Bour D, Kizilyalli DI (2014) 1.5 kV and 2.2 mΩ cm2 vertical GaN transistors on bulk-GaN substrates. IEEE Electron Device Lett 35(9):939–941

    Google Scholar 

  16. Oka T, Ina T, Ueno Y, Nishii J (2015) 1.8 mΩ cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation. Appl Phys Express 8(5):054101

    Article  Google Scholar 

  17. Okada M, Saitoh Y, Yokoyama M, Nakata K, Yaegassi S, Katayama K, Ueno M, Kiyama M, Katsuyama T, Nakamura T (2010) Novel vertical heterojunction field-effect transistors with re-grown AlGaN/GaN two-dimensional electron gas channels on GaN substrates. Appl Phys Express 3(5):054201

    Article  Google Scholar 

  18. Diduck Q, Nie H, Alvarez B, Edwards A, Bour D, Aktas O, Disney D, Kizilyalli IC (2013) 1000 V vertical JFET using bulk GaN. ECS Trans 58(4):295–298

    Article  Google Scholar 

  19. Oka T, Ueno Y, Ina T, Hasegawa K (2014) Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl Phys Express 7(2):021002

    Article  Google Scholar 

  20. Yeluri R, Lu J, Hurni CA, Browne DA, Chowdhury S, Keller S, Speck JS, Mishra UK (2015) Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction. Appl Phys Lett 106(18):183502

    Article  Google Scholar 

  21. Ueda T, Tanaka T, Ueda D (2007) Gate injection transistor (GIT)-A normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Devices 54(12):3393–3399

    Article  Google Scholar 

  22. Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A, Hara N (2010) Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics. IEEE Electron Device Lett 31(3):189–191

    Article  Google Scholar 

  23. Cai Y, Zhou Y, Chen KJ, Lau KM (2005) High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett 26(7):435–437

    Article  Google Scholar 

  24. Niiyama Y, Kambayashi H, Ootomo S, Nomura ST, Yoshida S, Chow TP (2008) Over 2 A operation at 250 °C of GaN metal-oxide semiconductor field effect transistors on sapphire substrates. Jpn J Appl Phys 47(9):7128–7130

    Article  Google Scholar 

  25. Kanechika M, Uesugi T, Kachi T (2010) Advanced SiC and GaN power electronics for automotive systems. In: 2010 international electron devices meeting

    Google Scholar 

  26. Kruszewski P, Jasinski J, Sochacki T, Bockowski M, Jachymek R, Prystawko P, Zajac M, Kucharski R, Leszczynski M (2014) Vertical schottky diodes grown on low-dislocation density bulk GaN substrate. The international workshop on nitride semiconductor

    Google Scholar 

  27. Ji D, Chowdhury S (2015) Design of 1.2 kV power switches with low RON using GaN-based vertical JFET. IEEE Trans Electron Devices 62(8):2571–2578

    Article  Google Scholar 

  28. Chowdhury S (2010) PhD Thesis. AlGaN/GaN CAVETs for high power switching application

    Google Scholar 

  29. Anderson T, Kub F, Eddy C, Hite J, Feigelson B, Mastro M, Hobart K, Tadjer M (2014) Activation of Mg implanted in GaN by multicycle rapid thermal annealing. Electron Lett 50(3):197–198

    Article  Google Scholar 

  30. Ben Yaacov I (2004) PhD Thesis. AlGaN/GaN current aperture vertical electron transistor

    Google Scholar 

  31. Kachi T (2014) Recent progress of GaN power devices for automotive applications. Jpn J Appl Phys 53(10):100210

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Prof. Umesh Mishra, Drs. Brian Swenson and Man hoi Wong and Dong Ji for their technical contributions at various levels to this work.

The author would also like to thank Toyota Motor Corporation, Japan (Dr. Tetsu Kachi, Dr. Masahiro Sugimoto and Dr. Tsutomu Uesugi), and ARPA-E (Dr. Timothy Heidel, Dr. Pawel Gradzki, Dr. Eric Carlson and Dr. Daniel Cunningham) for supporting the vertical GaN device development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srabanti Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chowdhury, S. (2017). Vertical Gallium Nitride Technology. In: Meneghini, M., Meneghesso, G., Zanoni, E. (eds) Power GaN Devices. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-43199-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43199-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43197-0

  • Online ISBN: 978-3-319-43199-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics