Skip to main content

PD1 and PD-L1 Immune Checkpoint Inhibitors in Gastrointestinal Cancer

  • Chapter
  • First Online:
Immunotherapy for Gastrointestinal Cancer

Abstract

Gastrointestinal cancers are a major cause of morbidity and mortality worldwide. Cancers of the oesophagus, stomach, pancreas, gallbladder, liver, colon and rectum account for 29 % of new cancer cases and 37 % of cancer deaths [1]. The majority of these cancers are diagnosed at an advanced stage and outcomes remain poor. Systemic therapy for gastrointestinal tumours primarily relies on cytotoxic chemotherapy, with very few molecularly targeted agents incorporated in the treatment of these diseases. Recent advances have included the addition of trastuzumab, a monoclonal antibody against HER2, to cytotoxic chemotherapy in advanced HER2 amplified gastroesophageal adenocarcinoma, the addition of the monoclonal antibodies against EGFR, cetuximab or panitumumab, in advanced KRAS wild-type colorectal cancer, and the angiogenesis inhibitors bevacizumab, ramucirumab and sorafenib in advanced colorectal, gastric cancer and hepatocellular carcinoma, respectively [2–8]. Although these therapies have improved clinical outcomes, their benefit is modest due to the development of acquired resistance. Therefore, more effective therapies leading to durable responses are needed for the treatment of gastrointestinal cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136:E359–86. doi:10.1002/ijc.29210.

    Article  PubMed  CAS  Google Scholar 

  2. Bang Y-J, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97. doi:10.1016/S0140-6736(10)61121-X.

    Article  CAS  PubMed  Google Scholar 

  3. Van Cutsem E, Köhne C-H, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17. doi:10.1056/NEJMoa0805019.

    Article  PubMed  Google Scholar 

  4. Douillard J-Y, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–705. doi:10.1200/JCO.2009.27.4860.

    Article  CAS  PubMed  Google Scholar 

  5. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42. doi:10.1056/NEJMoa032691.

    Article  CAS  PubMed  Google Scholar 

  6. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25:1539–44. doi:10.1200/JCO.2006.09.6305.

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9. doi:10.1016/S0140-6736(13)61719-5.

    Article  CAS  PubMed  Google Scholar 

  8. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90. doi:10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  9. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19:5300–9. doi:10.1158/1078-0432.CCR-13-0143.

    Article  CAS  PubMed  Google Scholar 

  11. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. doi:10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65. doi:10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62. doi:10.1038/nature13904.

    Article  CAS  PubMed  Google Scholar 

  14. McDermott DF, Drake CG, Sznol M, et al. Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol. 2015;33:2013–20. doi:10.1200/JCO.2014.58.1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cho Y, Miyamoto M, Kato K, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003;63:1555–9.

    CAS  PubMed  Google Scholar 

  16. Schumacher K, Haensch W, Röefzaad C, Schlag PM. Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res. 2001;61(10):3932–6.

    CAS  PubMed  Google Scholar 

  17. Rauser S, Langer R, Tschernitz S, et al. High number of CD45RO+ tumor infiltrating lymphocytes is an independent prognostic factor in non-metastasized (stage I-IIA) esophageal adenocarcinoma. BMC Cancer. 2010;10:608. doi:10.1186/1471-2407-10-608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kono K, Kawaida H, Takahashi A, et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother. 2006;55:1064–71. doi:10.1007/s00262-005-0092-8.

    Article  CAS  PubMed  Google Scholar 

  19. Gabitass RF, Annels NE, Stocken DD, et al. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother. 2011;60:1419–30. doi:10.1007/s00262-011-1028-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsia J-Y, Chen J-T, Chen C-Y, et al. Prognostic significance of intratumoral natural killer cells in primary resected esophageal squamous cell carcinoma. Chang Gung Med J. 2005;28:335–40.

    PubMed  Google Scholar 

  21. Ohigashi Y. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res. 2005;11:2947–53. doi:10.1158/1078-0432.CCR-04-1469.

    Article  CAS  PubMed  Google Scholar 

  22. Derks S, Nason KS, Liao X, et al. Epithelial PD-L2 expression marks Barrett’s esophagus and esophageal adenocarcinoma. Cancer Immunol Res. 2015;3:1123–9. doi:10.1158/2326-6066.CIR-15-0046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee HE, Chae SW, Lee YJ, et al. Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer. 2008;99:1704–11. doi:10.1038/sj.bjc.6604738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi HS, Ha SY, Kim H-M, et al. The prognostic effects of tumor infiltrating regulatory T cells and myeloid derived suppressor cells assessed by multicolor flow cytometry in gastric cancer patients. Oncotarget. 2016;7(7):7940–51. doi:10.18632/oncotarget.6958.

    PubMed  PubMed Central  Google Scholar 

  25. Perrone G, Ruffini PA, Catalano V, et al. Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer. 2008;44:1875–82. doi:10.1016/j.ejca.2008.05.017.

    Article  CAS  PubMed  Google Scholar 

  26. Shen Z, Zhou S, Wang Y, et al. Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J Cancer Res Clin Oncol. 2010;136:1585–95. doi:10.1007/s00432-010-0816-9.

    Article  CAS  PubMed  Google Scholar 

  27. Haas M, Dimmler A, Hohenberger W, et al. Stromal regulatory T-cells are associa87ted with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterol. 2009;9:65. doi:10.1186/1471-230X-9-65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006;108:19–24. doi:10.1016/j.acthis.2006.01.003.

    Article  PubMed  Google Scholar 

  29. Hou J, Yu Z, Xiang R, et al. Correlation between infiltration of FOXP3+ regulatory T cells and expression of B7-H1 in the tumor tissues of gastric cancer. Exp Mol Pathol. 2014;96:284–91. doi:10.1016/j.yexmp.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Qiu M, Jin Y, et al. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinicopathologic factors. Int J Clin Exp Pathol. 2015;8:11084–91.

    PubMed  PubMed Central  Google Scholar 

  31. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9. doi:10.1038/nature13480.

    Article  CAS  Google Scholar 

  32. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99. doi:10.1056/NEJMoa1406498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8. doi:10.1126/science.aaa1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koeppel M, Garcia-Alcalde F, Glowinski F, et al. Helicobacter pylori infection causes characteristic DNA damage patterns in human cells. Cell Rep. 2015;11:1703–13. doi:10.1016/j.celrep.2015.05.030.

    Article  CAS  PubMed  Google Scholar 

  35. Das S, Suarez G, Beswick EJ, et al. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol. 2006;176:3000–9.

    Article  CAS  PubMed  Google Scholar 

  36. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4. doi:10.1126/science.1129139.

    Article  CAS  PubMed  Google Scholar 

  37. Mlecnik B, Tosolini M, Kirilovsky A, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29:610–8. doi:10.1200/JCO.2010.30.5425.

    Article  PubMed  Google Scholar 

  38. Pagès F, Kirilovsky A, Mlecnik B, et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol. 2009;27:5944–51. doi:10.1200/JCO.2008.19.6147.

    Article  PubMed  CAS  Google Scholar 

  39. Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92. doi:10.1200/JCO.2008.18.7229.

    Article  PubMed  Google Scholar 

  40. Correale P, Rotundo MS, Del Vecchio MT, et al. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother. 2010;33:435–41. doi:10.1097/CJI.0b013e3181d32f01.

    Article  PubMed  Google Scholar 

  41. Frey DM, Droeser RA, Viehl CT, et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer. 2010;126:2635–43. doi:10.1002/ijc.24989.

    CAS  PubMed  Google Scholar 

  42. Nosho K, Baba Y, Tanaka N, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222:350–66. doi:10.1002/path.2774.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sinicrope FA, Rego RL, Ansell SM, et al. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137:1270–9. doi:10.1053/j.gastro.2009.06.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Camus M, Tosolini M, Mlecnik B, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009;69:2685–93. doi:10.1158/0008-5472.CAN-08-2654.

    Article  CAS  PubMed  Google Scholar 

  45. Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother. 2011;60:909–18. doi:10.1007/s00262-011-1046-y.

    Article  CAS  PubMed  Google Scholar 

  46. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87. doi:10.1053/j.gastro.2009.12.064.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim H, Jen J, Vogelstein B, Hamilton SR. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994;145:148–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dolcetti R, Viel A, Doglioni C, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol. 1999;154:1805–13. doi:10.1016/S0002-9440(10)65436-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma – Smyrk – 2001 – Cancer – Wiley Online Library. Cancer. 2001;91(12):2417–22.

    Article  CAS  PubMed  Google Scholar 

  50. Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;pii: S2211-1247:30364-3. doi:10.1016/j.celrep.2016.03.075.

    Google Scholar 

  51. Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342:69–77. doi:10.1056/NEJM200001133420201.

    Article  CAS  PubMed  Google Scholar 

  52. Guidoboni M, Gafà R, Viel A, et al. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol. 2001;159:297–304. doi:10.1016/S0002-9440(10)61695-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Michel S, Benner A, Tariverdian M, et al. High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer. 2008;99:1867–73. doi:10.1038/sj.bjc.6604756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43–51. doi:10.1158/2159-8290.CD-14-0863.

    Article  CAS  PubMed  Google Scholar 

  55. Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18:4266–76. doi:10.1158/1078-0432.CCR-11-3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. von Bernstorff W, Voss M, Freichel S, et al. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res. 2001;7:925s–32.

    Google Scholar 

  57. Ademmer K, Ebert M, Müller-Ostermeyer F, et al. Effector T lymphocyte subsets in human pancreatic cancer: detection of CD8 + CD18+ cells and CD8 + CD103+ cells by multi-epitope imaging. Clin Exp Immunol. 1998;112:21–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fukunaga A, Miyamoto M, Cho Y, et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28:e26–31.

    Article  PubMed  Google Scholar 

  59. Ino Y, Yamazaki-Itoh R, Shimada K, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23. doi:10.1038/bjc.2013.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34. doi:10.1158/1078-0432.CCR-06-0369.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao F, Obermann S, von Wasielewski R, et al. Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology. 2009;128:141–9. doi:10.1111/j.1365-2567.2009.03105.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ikemoto T, Yamaguchi T, Morine Y, et al. Clinical roles of increased populations of Foxp3 + CD4+ T cells in peripheral blood from advanced pancreatic cancer patients. Pancreas. 2006;33:386–90. doi:10.1097/01.mpa.0000240275.68279.13.

    Article  PubMed  Google Scholar 

  63. Nomi T, Sho M, Akahori T, et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007;13:2151–7. doi:10.1158/1078-0432.CCR-06-2746.

    Article  CAS  PubMed  Google Scholar 

  64. Chen X-L, Yuan S-X, Chen C, et al. Expression of B7-H1 protein in human pancreatic carcinoma tissues and its clinical significance. Ai Zheng. 2009;28:1328–32.

    PubMed  Google Scholar 

  65. Geng L, Huang D, Liu J, et al. B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol. 2008;134:1021–7. doi:10.1007/s00432-008-0364-8.

    Article  CAS  PubMed  Google Scholar 

  66. Loos M, Giese NA, Kleeff J, et al. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer. Cancer Lett. 2008;268:98–109. doi:10.1016/j.canlet.2008.03.056.

    Article  CAS  PubMed  Google Scholar 

  67. Wang L, Ma Q, Chen X, et al. Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma. World J Surg. 2010;34:1059–65. doi:10.1007/s00268-010-0448-x.

    Article  PubMed  Google Scholar 

  68. Witkiewicz A, Williams TK, Cozzitorto J, et al. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg. 2008;206:849–54. doi:10.1016/j.jamcollsurg.2007.12.014. – discussion 854–6.

    Article  PubMed  Google Scholar 

  69. Almoguera C, Shibata D, Forrester K, et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53:549–54.

    Article  CAS  PubMed  Google Scholar 

  70. Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 2012;21:822–35. doi:10.1016/j.ccr.2012.04.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pylayeva-Gupta Y, Lee KE, Hajdu CH, et al. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 2012;21:836–47. doi:10.1016/j.ccr.2012.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Davila JA, Morgan RO, Shaib Y, et al. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study. Gastroenterology. 2004;127:1372–80.

    Article  PubMed  Google Scholar 

  73. Yasui K, Hashimoto E, Komorizono Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–33. doi:10.1016/j.cgh.2011.01.023. – quiz e50.

    Article  PubMed  Google Scholar 

  74. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10:753–66. doi:10.1038/nri2858.

    Article  CAS  PubMed  Google Scholar 

  75. Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009;30:475–87. doi:10.1016/j.it.2009.07.009.

    Article  CAS  PubMed  Google Scholar 

  76. Ye B, Liu X, Li X, et al. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 2015;6:e1694. doi:10.1038/cddis.2015.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park S-H, Rehermann B. Immune responses to HCV and other hepatitis viruses. Immunity. 2014;40:13–24. doi:10.1016/j.immuni.2013.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miroux C, Vausselin T, Delhem N. Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response. Expert Opin Biol Ther. 2010;10:1563–72. doi:10.1517/14712598.2010.529125.

    Article  CAS  PubMed  Google Scholar 

  79. Wada Y, Nakashima O, Kutami R, et al. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology. 1998;27:407–14. doi:10.1002/hep.510270214.

    Article  CAS  PubMed  Google Scholar 

  80. Ney JT, Schmidt T, Kurts C, et al. Autochthonous liver tumors induce systemic T cell tolerance associated with T cell receptor down-modulation. Hepatology. 2009;49:471–81. doi:10.1002/hep.22652.

    Article  CAS  PubMed  Google Scholar 

  81. Fu J, Xu D, Liu Z, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–39. doi:10.1053/j.gastro.2007.03.102.

    Article  PubMed  Google Scholar 

  82. Gao Q, Qiu S-J, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25:2586–93. doi:10.1200/JCO.2006.09.4565.

    Article  PubMed  Google Scholar 

  83. Arihara F, Mizukoshi E, Kitahara M, et al. Increase in CD14+HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62:1421–30. doi:10.1007/s00262-013-1447-1.

    Article  CAS  PubMed  Google Scholar 

  84. Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135:234–43. doi:10.1053/j.gastro.2008.03.020.

    Article  CAS  PubMed  Google Scholar 

  85. Hoechst B, Voigtlaender T, Ormandy L, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50:799–807. doi:10.1002/hep.23054.

    Article  CAS  PubMed  Google Scholar 

  86. Xu P, Chen Y-J, Chen H, et al. The expression of programmed death-1 in circulating CD4+ and CD8+ T cells during hepatitis B virus infection progression and its correlation with clinical baseline characteristics. Gut Liver. 2014;8:186–95. doi:10.5009/gnl.2014.8.2.186.

    Article  CAS  PubMed  Google Scholar 

  87. Zeng Z, Shi F, Zhou L, et al. Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS One. 2011;6:e23621. doi:10.1371/journal.pone.0023621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shi F, Shi M, Zeng Z, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128:887–96. doi:10.1002/ijc.25397.

    Article  CAS  PubMed  Google Scholar 

  89. Han Y, Chen Z, Yang Y, et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology. 2014;59:567–79. doi:10.1002/hep.26694.

    Article  CAS  PubMed  Google Scholar 

  90. Yan W, Liu X, Ma H, et al. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 2015;64:1593–604. doi:10.1136/gutjnl-2014-307671.

    Article  CAS  PubMed  Google Scholar 

  91. Li F-J, Zhang Y, Jin G-X, et al. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett. 2013;150:116–22. doi:10.1016/j.imlet.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  92. Doi T, Piha-Paul SA, Jalal SI, et al. Updated results for the advanced esophageal carcinoma cohort of the phase Ib KEYNOTE-028 study of pembrolizumab (MK-3475). ASCO Meet Abst. 2016;34:7.

    Google Scholar 

  93. Kojima T, Hara H, Yamaguchi K, et al. Phase II study of nivolumab (ONO-4538/BMS-936558) in patients with esophageal cancer: preliminary report of overall survival. ASCO Meet Abst. 2016;34:TPS175.

    Google Scholar 

  94. Segal NH, Antonia SJ, Brahmer JR, et al. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. ASCO Meet Abst. 2014;32:3002.

    Google Scholar 

  95. Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7. doi:10.1038/nature14011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bang Y-J, Chung H-C, Shankaran V, et al. Relationship between PD-L1 expression and clinical outcomes in patients with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (MK-3475) in KEYNOTE-012. ASCO Meet Abst. 2015;33:4001.

    Google Scholar 

  97. Le DT, Bendell JC, Calvo E, Kim JW. Safety and activity of nivolumab monotherapy in advanced and metastatic (A/M) gastric or gastroesophageal junction cancer (GC/GEC): results from the CheckMate-032 study. Gastrointestinal Cancers Symposium J Clin Oncol (Meeting Abstracts) 2016;34(4) Suppl 6.

    Google Scholar 

  98. Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol. 2005;17:133–44. doi:10.1093/intimm/dxh194.

    Article  CAS  PubMed  Google Scholar 

  99. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 2013;73:3591–603. doi:10.1158/0008-5472.CAN-12-4100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bendell JC, Powderly JD, Lieu CH, et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). ASCO Meet Abst. 2015;33:704.

    Google Scholar 

  101. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22:23–30. doi:10.1200/JCO.2004.09.046.

    Article  CAS  PubMed  Google Scholar 

  102. Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013;19:462–8. doi:10.1158/1078-0432.CCR-12-2625.

    Article  CAS  PubMed  Google Scholar 

  103. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. doi:10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Segal NH, Hamid O, Hwu W, et al. 1058PDA phase I multi-arm dose-expansion study of the anti-programmed cell death-ligand-1 (PD-L1) antibody MEDI4736: preliminary data. Annals of Oncology. 2014;25 (Suppl. 4):361–72. doi:10.1093/annonc/mdu342.11

  105. Sangro B, Gomez-Martin C, la Mata de M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81–8. doi:10.1016/j.jhep.2013.02.022.

    Article  CAS  PubMed  Google Scholar 

  106. El-Khoueiry AB, Melero I, Crocenzi TS, et al. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. ASCO Meet Abst. 2015;33:LBA101.

    Google Scholar 

  107. Kefford R, Ribas A, Hamid O, et al. Clinical efficacy and correlation with tumor PD-L1 expression in patients (pts) with melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475. ASCO Meet Abst. 2014;32:3005.

    Google Scholar 

  108. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56. doi:10.1158/1535-7163.MCT-14-0983.

    Article  CAS  PubMed  Google Scholar 

  109. Shankaran V, Muro K, Bang Y-J, et al. Correlation of gene expression signatures and clinical outcomes in patients with advanced gastric cancer treated with pembrolizumab (MK-3475). ASCO Meet Abst. 2015;33:3026.

    Google Scholar 

  110. Luke JJ, Bao R, Spranger S, et al. Correlation of WNT/{beta}-catenin pathway activation with immune exclusion across most human cancers. ASCO Meet Abst. 2016;34:3004.

    Google Scholar 

  111. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:1270–1. doi:10.1056/NEJMc1509660.

    Article  PubMed  CAS  Google Scholar 

  112. Janjigian YY, Bendell JC, Calvo E, et al. CheckMate-032: phase I/II, open-label study of safety and activity of nivolumab (nivo) alone or with ipilimumab (ipi) in advanced and metastatic (A/M) gastric cancer (GC). ASCO Meet Abst. 2016;34:4010.

    Google Scholar 

  113. Overman MJ, Kopetz S, McDermott RS, et al. Nivolumab {+/−} ipilimumab in treatment (tx) of patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): CheckMate-142 interim results. ASCO Meet Abst. 2016;34:3501.

    Google Scholar 

  114. Woo S-R, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27. doi:10.1158/0008-5472.CAN-11-1620.

    Article  CAS  PubMed  Google Scholar 

  115. Mahajan S, Cervera A, MacLeod M, et al. The role of ICOS in the development of CD4 T cell help and the reactivation of memory T cells. Eur J Immunol. 2007;37:1796–808. doi:10.1002/eji.200636661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ye Q, Song D-G, Poussin M, et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res. 2014;20:44–55. doi:10.1158/1078-0432.CCR-13-0945.

    Article  CAS  PubMed  Google Scholar 

  117. Fan X, Quezada SA, Sepulveda MA, et al. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014;211:715–25. doi:10.1084/jem.20130590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ruby CE, Redmond WL, Haley D, Weinberg AD. Anti-OX40 stimulation in vivo enhances CD8+ memory T cell survival and significantly increases recall responses. Eur J Immunol. 2007;37:157–66. doi:10.1002/eji.200636428.

    Article  CAS  PubMed  Google Scholar 

  119. van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy. 2015;7:655–67. doi:10.2217/imt.15.32.

    Article  PubMed  CAS  Google Scholar 

  120. Kohrt HE, Colevas AD, Houot R, et al. Targeting CD137 enhances the efficacy of cetuximab. J Clin Invest. 2014;124:2668–82. doi:10.1172/JCI73014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331:1612–6. doi:10.1126/science.1198443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang X, Zhang X, Mortenson ED, et al. Cetuximab-mediated tumor regression depends on innate and adaptive immune responses. Mol Ther. 2013;21:91–100. doi:10.1038/mt.2012.184.

    Article  CAS  PubMed  Google Scholar 

  123. Stagg J, Loi S, Divisekera U, et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci. 2011;108:7142–7. doi:10.1073/pnas.1016569108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res. 2001;23:263–72. doi:10.1385/IR:23:2-3:263.

    Article  CAS  PubMed  Google Scholar 

  125. Oyama T, Ran S, Ishida T, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol. 1998;160:1224–32.

    CAS  PubMed  Google Scholar 

  126. Osada T, Chong G, Tansik R, et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother. 2008;57:1115–24. doi:10.1007/s00262-007-0441-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kandalaft LE, Motz GT, Busch J, Coukos G. Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol Immunol. 2011;344:129–48. doi:10.1007/82_2010_95.

    CAS  PubMed  Google Scholar 

  128. Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139–48. doi:10.1084/jem.20140559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hodi FS, Lawrence D, Lezcano C, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–42. doi:10.1158/2326-6066.CIR-14-0053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sugiyama D, Nishikawa H, Maeda Y, et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci. 2013;110:17945–50. doi:10.1073/pnas.1316796110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol. 2011;3(3):pii: a003285. doi:10.1101/cshperspect.a003285.

    Article  CAS  Google Scholar 

  132. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9:259–70. doi:10.1038/nri2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–69. doi:10.1158/0008-5472.CAN-13-3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54. doi:10.1172/JCI31178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Spranger S, Koblish HK, Horton B, et al. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer. 2014;2:3. doi:10.1186/2051-1426-2-3.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Holmgaard RB, Zamarin D, Munn DH, et al. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210:1389–402. doi:10.1084/jem.20130066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gangadhar TC, Hamid O, Smith DC, et al. Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother Cancer. 2015;3:O7. doi:10.1186/2051-1426-3-S2-O7.

    Article  PubMed Central  Google Scholar 

  138. Feig C, Jones JO, Kraman M. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nowak AK, Lake RA, Marzo AL, et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol. 2003;170:4905–13.

    Article  CAS  PubMed  Google Scholar 

  140. Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 2011;71:5101–10. doi:10.1158/0008-5472.CAN-10-2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lesterhuis WJ, Punt CJA, Hato SV, et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest. 2011;121:3100–8. doi:10.1172/JCI43656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–61. doi:10.1158/0008-5472.CAN-09-3690.

    Article  CAS  PubMed  Google Scholar 

  143. Stamell EF, Wolchok JD, Gnjatic S, et al. The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys. 2013;85:293–5. doi:10.1016/j.ijrobp.2012.03.017.

    Article  PubMed  Google Scholar 

  144. Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31. doi:10.1056/NEJMoa1112824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lutz ER, Wu AA, Bigelow E, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res. 2014;2:616–31. doi:10.1158/2326-6066.CIR-14-0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Soares KC, Rucki AA, Wu AA, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. 2015;38:1–11. doi:10.1097/CJI.0000000000000062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rahma OE, Khleif SN. Therapeutic vaccines for gastrointestinal cancers. Gastroenterol Hepatol (N Y). 2011;7:517–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David McDermott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pectasides, E., McDermott, D. (2017). PD1 and PD-L1 Immune Checkpoint Inhibitors in Gastrointestinal Cancer. In: Kerr, D., Johnson, R. (eds) Immunotherapy for Gastrointestinal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-43063-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43063-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43061-4

  • Online ISBN: 978-3-319-43063-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics