Skip to main content

Ion Collisions with Biomolecules and Biomolecular Clusters

  • Chapter
  • First Online:
Nanoscale Insights into Ion-Beam Cancer Therapy

Abstract

In this chapter we describe the recent progress which has been made in experimental studies of ion collisions with biomolecular systems, either in form of isolated biomolecules in the gas phase or as clusters containing up to several tens of biomolecules. Most of the work has been performed with projectiles which play an important role in ion beam cancer therapy applications as protons or multiply charged ions of carbon and oxygen. The biomolecular targets are characterized by an increasing complexity and include water molecules, nucleobases, nucleosides and nucleotides, as well as amino acids and protein segments. Other complex targets are heterogeneous clusters containing biomolecular systems which are embedded in a water environment. After an introduction to ion-molecule collisions using \(\text {C}_{60}\) fullerene as a model system, we will review ionization and charge transfer processes as well as ion-induced fragmentation studies. Finally we will discuss the effect of the environment considering clusters of biomolecules including hydrated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin S, Chen L, Denis A, Désesquelles J (1999) Phys Rev A 59(3):R1734. doi:10.1103/PhysRevA.59.R1734

    Article  ADS  Google Scholar 

  2. Martin S, Bernard J, Chen L, Denis A, Désesquelles J (2000) Eur Phys J D 12(1):27. doi:10.1007/s100530070039

    Article  ADS  Google Scholar 

  3. Tomita S, Lebius H, Brenac A, Chandezon F, Huber BA (2002) Phys Rev A 65(5):053201. doi:10.1103/PhysRevA.65.053201

    Article  ADS  Google Scholar 

  4. Opitz J, Lebius H, Tomita S, Huber BA, Moretto Capelle P, Bordenave Montesquieu D, Bordenave Montesquieu A, Reinköster A, Werner U, Lutz HO, Niehaus A, Benndorf M, Haghighat K, Schmidt HT, Cederquist H (2000) Phys Rev A 62(2):022705. doi:10.1103/PhysRevA.62.022705

  5. Rentenier A, Bordenave-Montesquieu A, Moretto-Capelle P, Bordenave-Montesquieu D (2004) J Phys B: At Mol Opt Phys 37(12):2429. doi:10.1088/0953-4075/37/12/001

    Article  ADS  Google Scholar 

  6. Rentenier A, Bordenave-Montesquieu A, Moretto-Capelle P, Bordenave-Montesquieu D (2004) J Phys B: At Mol Opt Phys 37(12):2455. doi:10.1088/0953-4075/37/12/002

    Article  ADS  Google Scholar 

  7. Rentenier A, Ruiz LF, Díaz-Tendero S, Zarour B, Moretto-Capelle P, Bordenave-Montesquieu D, Bordenave-Montesquieu A, Hervieux PA, Alcamí M, Politis MF, Hanssen J, Martín F (2008) Phys Rev Lett 100(18):183401. doi:10.1103/PhysRevLett.100.183401

    Article  ADS  Google Scholar 

  8. Chen L, Wei B, Bernard J, Brédy R, Martin S (2005) Phys Rev A 71(4):043201. doi:10.1103/PhysRevA.71.043201

    Article  ADS  Google Scholar 

  9. Reinköster A, Siegmann B, Werner U, Huber BA, Lutz HO (2002) J Phys B: At Mol Opt Phys 35(24):4989. doi:10.1088/0953-4075/35/24/304

    Article  ADS  Google Scholar 

  10. de Vries J, Hoekstra R, Morgenstern R, Schlathölter T (2003) Phys Rev Lett 91(5):053401. doi:10.1103/PhysRevLett.91.053401

    Article  ADS  Google Scholar 

  11. Moretto-Capelle P, Le Padellec A (2006) Phys Rev A 74(6):062705. doi:10.1103/PhysRevA.74.062705

    Article  ADS  Google Scholar 

  12. Brédy R, Bernard J, Chen L, Montagne G, Li B, Martin S (2009) J Chem Phys 130(11):114305. doi:10.1063/1.3080162

    Article  ADS  Google Scholar 

  13. Alvarado F, Bari S, Hoekstra R, Schlathölter T (2006) Phys Chem Chem Phys 8(16):1922. doi:10.1039/B517109A

    Article  Google Scholar 

  14. Maclot S, Capron M, Maisonny R, Ławicki A, Méry A, Rangama J, Chesnel JY, Bari S, Hoekstra R, Schlathölter T, Manil B, Adoui L, Rousseau P, Huber BA (2011) ChemPhysChem 12(5):930. doi:10.1002/cphc.201000823

    Article  Google Scholar 

  15. Bernigaud V, Manil B, Maunoury L, Rangama J, Huber BA (2009) Eur Phys J D 51(1):125. doi:10.1140/epjd/e2008-00153-8

    Article  ADS  Google Scholar 

  16. Werner U, Beckord K, Becker J, Lutz HO (1995) Phys Rev Lett 74(11):1962. doi:10.1103/PhysRevLett.74.1962

    Article  ADS  Google Scholar 

  17. Bari S, Hoekstra R, Schlatholter T (2010) Phys Chem Chem Phys 12(14):3376. doi:10.1039/B924145K

    Article  Google Scholar 

  18. Schmidt HT (2015) Phys Scr 2015(T166):014063. doi:10.1088/0031-8949/2015/T166/014063

    Article  Google Scholar 

  19. Toburen LH (1995) Atomic and molecular data for radiotherapy and radiation research, no. 799 in IAEA-TECDOC (International Atomic energy Agency, Vienna, 1995). In: Ionization by fast charged particles, pp 47–162. http://www-pub.iaea.org/books/IAEABooks/5444/Atomic-and-Molecular-Data-for-Radiotherapy-and-Radiation-Research

  20. Toburen LH (1998) Radiat Environ Biophys 37(4):221. doi:10.1007/s004110050122

    Article  Google Scholar 

  21. Coupier B, Farizon B, Farizon M, Gaillard M, Gobet F, de Castro N, Jalbert FG, Ouaskit S, Carré M, Gstir B, Hanel G, Denifl S, Feketeova L, Scheier P, Märk T (2002) Eur Phys J D 20(3):459. doi:10.1140/epjd/e2002-00166-3

  22. Gobet F, Eden S, Coupier B, Tabet J, Farizon B, Farizon M, Gaillard MJ, Carré M, Ouaskit S, Märk TD, Scheier P (2004) Phys Rev A 70(6):062716. doi:10.1103/PhysRevA.70.062716

    Article  ADS  Google Scholar 

  23. Tabet J, Eden S, Feil S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S, Märk TD (2010) Phys Rev A 82(2):022703. doi:10.1103/PhysRevA.82.022703

    Article  ADS  Google Scholar 

  24. Afrosimov VV, Basalaev AA, Morozov YG, Panov MN, Smirnov OV, Tropp EA (2012) Tech Phys 57(5):594. doi:10.1134/S1063784212050027

    Article  Google Scholar 

  25. Afrosimov VV, Basalaev AA, Vasyutinskii OS, Panov MN, Smirnov OV (2015) Eur Phys J D 69(1):3. doi:10.1140/epjd/e2014-50435-5

    Article  ADS  Google Scholar 

  26. Afrosimov VV, Basalaev AA, Morozov YG, Panov MN, Smirnov OV, Tropp EA (2013) Tech Phys 58(9):1243. doi:10.1134/S1063784213090028

    Article  Google Scholar 

  27. Bacchus-Montabonel MC (2014) Appl Radiat Isotopes 83(Part B):95. doi:10.1016/j.apradiso.2012.12.017

  28. Bacchus-Montabonel MC (2015) Eur Phys J D 69(4):107. doi:10.1140/epjd/e2015-60049-0

    Article  ADS  Google Scholar 

  29. Hervé Du Penhoat MA, López-Tarifa P, Ghose KK, Jeanvoine Y, Gaigeot MP, Vuilleumier R, Politis MF, Bacchus-Montabonel MC (2014) J Mol Model 20(6):2221. doi:10.1007/s00894-014-2221-9

    Article  Google Scholar 

  30. Errea L, Illescas C, Méndez L, Rabadán I (2014) Appl Radiat Isotopes 83(Part B):86. doi:10.1016/j.apradiso.2013.01.021

  31. Bacchus-Montabonel MC, Calvo F (2015) Phys Chem Chem Phys 17(15):9629. doi:10.1039/C5CP00611B

    Article  Google Scholar 

  32. Martin S, Ortega C, Chen L, Brédy R, Vernier A, Dugourd P, Antoine R, Bernard J, Reitsma G, Gonzalez-Magaña O, Hoekstra R, Schlathölter T (2014) Phys Rev A 89(1):012707. doi:10.1103/PhysRevA.89.012707

    Article  ADS  Google Scholar 

  33. Niehaus A (1986) J Phys B: At Mol Phys 19(18):2925. doi:10.1088/0022-3700/19/18/021

    Article  ADS  Google Scholar 

  34. Forsberg BO, Alexander JD, Chen T, Pettersson AT, Gatchell M, Cederquist H, Zettergren H (2013) J Chem Phys 138(5):054306. doi:10.1063/1.4790164

    Article  ADS  Google Scholar 

  35. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Science 287(5458):1658. doi:10.1126/science.287.5458.1658

    Article  ADS  Google Scholar 

  36. Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Guèye P, Mantero A, Mascialino B, Moretto P, Nieminen P, Villagrasa C, Zacharatou C (2010) Int J Model Simul Sci Comput 1(2):157. doi:10.1142/S1793962310000122

    Article  Google Scholar 

  37. Fuss M, Sanz AG, Muñoz A, Blanco F, Téllez M, Huerga C, Garcia G (2011) Biomedical engineering, trends in electronics, communications and software. In: Laskovski AN (ed) LEPTS—a radiation-matter interaction model at the molecular level and its use in biomedical applications. InTech, pp 277–294. doi:10.5772/13061

  38. Errea L, Illescas C, Méndez L, Rabadán I, Suárez J (2015) Chem Phys 462(1):17. doi:10.1016/j.chemphys.2015.08.009

    Article  ADS  Google Scholar 

  39. Nandi S, Biswas S, Khan A, Monti JM, Tachino CA, Rivarola RD, Misra D, Tribedi LC (2013) Phys Rev A 87(5):052710. doi:10.1103/PhysRevA.87.052710

    Article  ADS  Google Scholar 

  40. Rivarola RD, Galassi ME, Fainstein PD, Champion C (2013) Theory of heavy ion collision physics in hadron therapy. Computation of distorted wave cross sections for high-energy inelastic collisions of heavy ions with water molecules. In: Belkić D (ed) Advances in quantum chemistry, vol 65. Academic Press, Amsterdam, pp 231–267. doi:10.1016/B978-0-12-396455-7.00009-1

  41. Champion C, Hanssen J, Rivarola RD (2013) Theory of heavy ion collision physics in hadron therapy. In: Belkić D (ed) Advances in quantum chemistry, vol 65. Academic Press, Amsterdam. The first born approximation for ionization and charge transfer in energetic collisions of multiply charged ions with water, pp 269–313. doi:10.1016/B978-0-12-396455-7.00010-8

  42. Tachino CA, Monti JM, Fojón OA, Champion C, Rivarola RD (2014) J Phys B: At Mol Opt Phys 47(3):035203. doi:10.1088/0953-4075/47/3/035203

    Article  ADS  Google Scholar 

  43. Bhattacharjee S, Biswas S, Bagdia C, Roychowdhury M, Nandi S, Misra D, Monti JM, Tachino CA, Rivarola RD, Champion C, Tribedi LC (2016) J Phys B: At Mol Opt Phys 49(6):065202. doi:10.1088/0953-4075/49/6/065202

    Article  ADS  Google Scholar 

  44. Ohsawa D, Tawara H, Soga F, Galassi ME, Rivarola RD (2014) J Phys: Conf Ser 488(10):102030. doi:10.1088/1742-6596/488/10/102030

    ADS  Google Scholar 

  45. Murakami M, Kirchner T, Horbatsch M, Lüdde HJ (2012) Phys Rev A 85(5):052713. doi:10.1103/PhysRevA.85.052713

    Article  ADS  Google Scholar 

  46. Iriki Y, Kikuchi Y, Imai M, Itoh A (2011) Phys Rev A 84(3):032704. doi:10.1103/PhysRevA.84.032704

    Article  ADS  Google Scholar 

  47. Champion C, Galassi ME, Fojón O, Lekadir H, Hanssen J, Rivarola RD, Weck PF, Agnihotri AN, Nandi SN, Tribedi LC (2012) J Phys: Conf Ser 373(1):012004. doi:10.1088/1742-6596/373/1/012004

    ADS  Google Scholar 

  48. Tribedi LC, Agnihotri AN, Galassi ME, Rivarola RD, Champion C (2012) Eur Phys J D 66(11):1. doi:10.1140/epjd/e2012-30330-y

    Article  Google Scholar 

  49. Agnihotri AN, Kasthurirangan S, Nandi S, Kumar A, Champion C, Lekadir H, Hanssen J, Weck PF, Galassi ME, Rivarola RD, Fojón O, Tribedi LC (2013) J Phys B: At Mol Opt Phys 46(18):185201. doi:10.1088/0953-4075/46/18/185201

    Article  ADS  Google Scholar 

  50. Agnihotri AN, Nandi S, Kasthurirangan S, Kumar A, Galassi ME, Rivarola RD, Champion C, Tribedi LC (2013) Phys Rev A 87(3):032716. doi:10.1103/PhysRevA.87.032716

    Article  ADS  Google Scholar 

  51. Itoh A, Iriki Y, Imai M, Champion C, Rivarola RD (2013) Phys Rev A 88(5):052711. doi:10.1103/PhysRevA.88.052711

    Article  ADS  Google Scholar 

  52. Nandi S (2014) Collisions of highly charged ions with small molecules: some new facets. Ph.D. thesis, Tata Institute of Fundamental Research, Mumbai

    Google Scholar 

  53. Monti JM, Fojón OA, Hanssen J, Rivarola RD (2010) J Phys B: At Mol Opt Phys 43(20):205203. doi:10.1088/0953-4075/43/20/205203

    Article  ADS  Google Scholar 

  54. de Vera P, Garcia-Molina R, Abril I, Solov’yov AV (2013) Phys Rev Lett 110(14):148104. doi:10.1103/PhysRevLett.110.148104

    Article  ADS  Google Scholar 

  55. de Vera P, Garcia-Molina R, Abril I (2015) Phys Rev Lett 114(1):018101. doi:10.1103/PhysRevLett.114.018101

    Article  ADS  Google Scholar 

  56. Olson RE, Berkner KH, Graham WG, Pyle RV, Schlachter AS, Stearns JW (1978) Phys Rev Lett 41(3):163. doi:10.1103/PhysRevLett.41.163

    Article  ADS  Google Scholar 

  57. Bethe H (1930) Ann Phys 397(3):325. doi:10.1002/andp.19303970303

    Article  Google Scholar 

  58. Tribedi LC (2016) Private communications

    Google Scholar 

  59. Wilson WE, Toburen LH (1975) Phys Rev A 11(4):1303. doi:10.1103/PhysRevA.11.1303

    Article  ADS  Google Scholar 

  60. Toburen LH, Wilson WE, Porter LE (1977) J Chem Phys 67(9):4212. doi:10.1063/1.435401

    Article  ADS  Google Scholar 

  61. Montenegro EC, Sigaud GM, DuBois RD (2013) Phys Rev A 87(1):012706. doi:10.1103/PhysRevA.87.012706

    Article  ADS  Google Scholar 

  62. Wilhelm RA, El-Said AS, Krok F, Heller R, Gruber E, Aumayr F, Facsko S (2015) Prog Surf Sci 90(3):377. doi:10.1016/j.progsurf.2015.06.001

    Article  ADS  Google Scholar 

  63. de Vries J, Hoekstra R, Morgenstern R, Schlathölter T (2002) J Phys B: At Mol Opt Phys 35(21):4373. doi:10.1088/0953-4075/35/21/304

    Article  ADS  Google Scholar 

  64. Bari S, Sobocinski P, Postma J, Alvarado F, Hoekstra R, Bernigaud V, Manil B, Rangama J, Huber B, Schlathölter T (2008) J Chem Phys 128(7):074306. doi:10.1063/1.2830032

    Article  ADS  Google Scholar 

  65. Schlathölter T (2012) Radiation damage in biomolecular systems. In: Gómez-Tejedor GG, Fuss M (eds) Biological and medical physics, biomedical engineering. Springer Netherlands, Dordrecht, Heidelberg, London, New York. Ion-induced radiation damage in biomolecular systems, pp 177–190. doi:10.1007/978-94-007-2564-5

  66. Guilhaus M (1995) J Mass Spectrom 30(11):1519. doi:10.1002/jms.1190301102

    Article  Google Scholar 

  67. Capron M, Díaz-Tendero S, Maclot S, Domaracka A, Lattouf E, Ławicki A, Maisonny R, Chesnel JY, Méry A, Poully JC, Rangama J, Adoui L, Martín F, Alcamí M, Rousseau P, Huber BA (2012) Chem-Eur J 18(30):9321. doi:10.1002/chem.201103922

    Article  Google Scholar 

  68. Fenn J, Mann M, Meng C, Wong S, Whitehouse C (1989) Science 246(4926):64. doi:10.1126/science.2675315

    Article  ADS  Google Scholar 

  69. da Silva H, Oller J, Gatchell M, Stockett MH, Hervieux PA, Adoui L, Alcamí M, Huber BA, Martín F, Cederquist H, Zettergren H, Rousseau P, Díaz-Tendero S (2014) Phys Rev A 90(3):032701. doi:10.1103/PhysRevA.90.032701

    Article  ADS  Google Scholar 

  70. Murakami M, Kirchner T, Horbatsch M, Lüdde HJ (2012) Phys Rev A 86(2):022719. doi:10.1103/PhysRevA.86.022719

    Article  ADS  Google Scholar 

  71. Illescas C, Errea LF, Méndez L, Pons B, Rabadán I, Riera A (2011) Phys Rev A 83(5):052704. doi:10.1103/PhysRevA.83.052704

    Article  ADS  Google Scholar 

  72. Suárez J, Méndez L, Rabadán I (2015) J Phys Chem Lett 6(1):72. doi:10.1021/jz5022894

    Article  Google Scholar 

  73. Sadr Arani L, Mignon P, Abdoul-Carime H, Farizon B, Farizon M, Chermette H (2012) Phys Chem Chem Phys 14(28):9855. doi:10.1039/C2CP40384F

  74. Maclot S, Piekarski DG, Domaracka A, Méry A, Vizcaino V, Adoui L, Martín F, Alcamí M, Huber BA, Rousseau P, Díaz-Tendero S (2013) J Phys Chem Lett 4(22):3903. doi:10.1021/jz4020234

    Article  Google Scholar 

  75. López-Tarifa P, Hervé du Penhoat MA, Vuilleumier R, Gaigeot MP, Tavernelli I, Le Padellec A, Champeaux JP, Alcamí M, Moretto-Capelle P, Martín F, Politis MF (2011) Phys Rev Lett 107(2):023202. doi:10.1103/PhysRevLett.107.023202

    Article  ADS  Google Scholar 

  76. Tabet J, Eden S, Feil S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S, Märk T (2010) Int J Mass Spectrom 292(1–3):53. doi:10.1016/j.ijms.2010.03.002

    Article  Google Scholar 

  77. Smirnov OV, Basalaev AA, Boitsov VM, Vyaz’min SY, Orbeli AL, Dubina MV (2014) Tech Phys 59(11):1698. doi:10.1134/S1063784214110231

    Article  Google Scholar 

  78. Rudek B, Arndt A, Bennett D, Wang M, Rabus H (2015) Eur Phys J D 69(10):237. doi:10.1140/epjd/e2015-60204-7

    Article  ADS  Google Scholar 

  79. Wolff W, Luna H, Sigaud L, Tavares AC, Montenegro EC (2014) J Chem Phys 140(6):064309. doi:10.1063/1.4864322

    Article  ADS  Google Scholar 

  80. Champeaux JP, Carcabal P, Rabier J, Cafarelli P, Sence M, Moretto-Capelle P (2010) Phys Chem Chem Phys 12(20):5454. doi:10.1039/B926803K

    Article  Google Scholar 

  81. Delaunay R, Champeaux JP, Maclot S, Capron M, Domaracka A, Méry A, Manil B, Adoui L, Rousseau P, Moretto-Capelle P, Huber BA (2014) Eur Phys J D 68(6):162. doi:10.1140/epjd/e2014-50073-y

    Article  ADS  Google Scholar 

  82. Wardman P (2007) Clin Oncol 19(6):397. doi:10.1016/j.clon.2007.03.010

    Article  Google Scholar 

  83. Poully JC, Miles J, De Camillis S, Cassimi A, Greenwood JB (2015) Phys Chem Chem Phys 17(11):7172. doi:10.1039/C4CP05303F

    Article  Google Scholar 

  84. Mishra P, Kadhane U (2014) Nucl Instrum Meth B 336(1):12. doi:10.1016/j.nimb.2014.06.007

    Article  ADS  Google Scholar 

  85. Chen L, Martin S, Bernard J, Brédy R (2007) Phys Rev Lett 98(19):193401. doi:10.1103/PhysRevLett.98.193401

    Article  ADS  Google Scholar 

  86. Alvarado F, Bernard J, Li B, Brédy R, Chen L, Hoekstra R, Martin S, Schlathölter T (2008) ChemPhysChem 9(9):1254. doi:10.1002/cphc.200800110

    Article  Google Scholar 

  87. Chen L, Brédy R, Bernard J, Montagne G, Allouche AR, Martin S (2011) J Chem Phys 135(11):114309. doi:10.1063/1.3621713

    Article  ADS  Google Scholar 

  88. Piekarski DG, Delaunay R, Maclot S, Adoui L, Martin F, Alcami M, Huber BA, Rousseau P, Domaracka A, Diaz-Tendero S (2015) Phys Chem Chem Phys 17(26):16767. doi:10.1039/C5CP01628B

    Article  Google Scholar 

  89. Kocisek J, Piekarski DG, Delaunay R, Huber BA, Adoui L, Martín F, Alcamí M, Rousseau P, Domaracka A, Kopyra J, Díaz-Tendero S (2015) J Phys Chem A 119(37):9581. doi:10.1021/acs.jpca.5b06009

    Article  Google Scholar 

  90. Bari S, Hoekstra R, Schlatholter T (2011) Int J Mass Spectrom 299(1):64. doi:10.1016/j.ijms.2010.09.019

    Article  Google Scholar 

  91. González-Magaña O, Tiemens M, Reitsma G, Boschman L, Door M, Bari S, Lahaie PO, Wagner JR, Huels MA, Hoekstra R, Schlathölter T (2013) Phys Rev A 87(3):032702. doi:10.1103/PhysRevA.87.032702

    Article  ADS  Google Scholar 

  92. Ha DT, Huels MA, Huttula M, Urpelainen S, Kukk E (2011) Phys Rev A 84(3):033419. doi:10.1103/PhysRevA.84.033419

    Article  ADS  Google Scholar 

  93. Herve du Penhoat MA, Ghose KK, Gaigeot MP, Vuilleumier R, Fujii K, Yokoya A, Politis MF (2015) Phys Chem Chem Phys 17(48):32375. doi:10.1039/C5CP05196G

  94. Chingin K, Makarov A, Denisov E, Rebrov O, Zubarev RA (2014) Anal Chem 86(1):372. doi:10.1021/ac403193k

    Article  Google Scholar 

  95. Hoffmann WD, Jackson GP (2014) J Am Soc Mass Spectrom 25(11):1939. doi:10.1007/s13361-014-0989-6

    Article  Google Scholar 

  96. Zimmermann U, Malinowski N, Näher U, Frank S, Martin TP (1994) Phys Z D 31(1):85. doi:10.1007/BF01426583

  97. Schlathölter T, Alvarado F, Bari S, Lecointre A, Hoekstra R, Bernigaud V, Manil B, Rangama J, Huber B (2006) ChemPhysChem 7(11):2339. doi:10.1002/cphc.200600361

    Article  Google Scholar 

  98. Deng Z, Bald I, Illenberger E, Huels M (2005) Phys Rev Lett 95(15):153201. doi:10.1103/PhysRevLett.95.153201

    Article  ADS  Google Scholar 

  99. Jochims HW, Schwell M, Baumgärtel H, Leach S (2005) Chem Phys 314(1–3):263. doi:10.1016/j.chemphys.2005.03.008

    Article  ADS  Google Scholar 

  100. Kelly REA, Kantorovich LN (2006) J Phys Chem B 110(5):2249. doi:10.1021/jp055552o

    Article  Google Scholar 

  101. Manil B, Maunoury L, Huber BA, Jensen J, Schmidt HT, Zettergren H, Cederquist H, Tomita S, Hvelplund P (2003) Phys Rev Lett 91(21):215504. doi:10.1103/PhysRevLett.91.215504

    Article  ADS  Google Scholar 

  102. Bari S, Alvarado F, Postma J, Sobocinski P, Hoekstra R, Schlathölter T (2008) Eur Phys J D 51(1):81. doi:10.1140/epjd/e2008-00054-x

    Article  ADS  Google Scholar 

  103. Maclot S, Piekarski DG, Delaunay R, Domaracka A, Méry A, Vizcaino V, Chesnel JY, Martín F, Alcamí M, Huber BA, Adoui L, Rousseau P, Díaz-Tendero S (2014) Eur Phys J D 68(6):149. doi:10.1140/epjd/e2014-40819-x

    Article  ADS  Google Scholar 

  104. Poully JC, Vizcaino V, Schwob L, Delaunay R, Kocisek J, Eden S, Chesnel JY, Mry A, Rangama J, Adoui L, Huber B (2015) ChemPhysChem 16(11):2389. doi:10.1002/cphc.201500275

    Article  Google Scholar 

  105. Bouchoux G, Huang S, Inda BS (2011) Phys Chem Chem Phys 13:651. doi:10.1039/C0CP00775G

    Article  Google Scholar 

  106. von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, New York

    Google Scholar 

  107. Farhataziz MAJ (1987) Rodgers, radiation chemistry: principles and applications. VCH Publishers, New York

    Google Scholar 

  108. Tachikawa H (2004) J Phys Chem A 108(39):7853. doi:10.1021/jp049269l

    Article  Google Scholar 

  109. Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schoffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Bocking H, Dorner R (2010) Nat Phys 6(2):139. doi:10.1038/nphys1498

    Article  Google Scholar 

  110. Mucke M, Braune M, Barth S, Forstel M, Lischke T, Ulrich V, Arion T, Becker U, Bradshaw A, Hergenhahn U (2010) Nat Phys 6(2):143. doi:10.1038/nphys1500

    Article  Google Scholar 

  111. Legendre S (2006) Étude de l’ionisation et de la dissociation d’\(\rm H\mathit{_2\rm O}\) induites par collision avec des ions multichargés rapides. Ph.D. thesis, université de Caen Basse-Normandie. https://tel.archives-ouvertes.fr/tel-00090898

  112. Maisonny R, Capron M, Maclot S, Poully JC, Domaracka A, Méry A, Adoui L, Rousseau P, Huber BA (2013) J Phys: Conf Ser 438(1):012007. doi:10.1088/1742-6596/438/1/012007

    ADS  Google Scholar 

  113. Abdoul-Carime H, Berthias F, Feketeová L, Marciante M, Calvo F, Forquet V, Chermette H, Farizon B, Farizon M, Mrk TD (2015) Angew Chem Int Ed 54(49):14685. doi:10.1002/anie.201505890

    Article  Google Scholar 

  114. Adoui L, Cassimi A, Gervais B, Grandin JP, Guillaume L, Maisonny R, Legendre S, Tarisien M, López-Tarifa P, Politis MF, du Penhoat MAH, Vuilleumier R, Gaigeot MP, Tavernelli I, Alcamí M, Martín F (2009) J Phys B: At Mol Opt Phys 42(7):075101. doi:10.1088/0953-4075/42/7/075101

    Article  ADS  Google Scholar 

  115. Larsen MC, Hvelplund P, Larsson MO, Shen H (1999) Eur Phys J D 5(2):283. doi:10.1007/s100530050257

    Article  ADS  Google Scholar 

  116. Zettergren H, Rousseau P, Wang Y, Seitz F, Chen T, Gatchell M, Alexander JD, Stockett MH, Rangama J, Chesnel JY, Capron M, Poully JC, Domaracka A, Méry A, Maclot S, Schmidt HT, Adoui L, Alcamí M, Tielens AGGM, Martín F, Huber BA, Cederquist H (2013) Phys Rev Lett 110(18):185501. doi:10.1103/PhysRevLett.110.185501

    Article  ADS  Google Scholar 

  117. Stockett MH, Zettergren H, Adoui L, Alexander JD, Bērziņš U, Chen T, Gatchell M, Haag N, Huber BA, Hvelplund P, Johansson A, Johansson HAB, Kulyk K, Rosén S, Rousseau P, Støchkel K, Schmidt HT, Cederquist H (2014) Phys Rev A 89(3):032701. doi:10.1103/PhysRevA.89.032701

  118. Delaunay R, Gatchell M, Rousseau P, Domaracka A, Maclot S, Wang Y, Stockett MH, Chen T, Adoui L, Alcamí M, Martín F, Zettergren H, Cederquist H, Huber BA (2015) J Phys Chem Lett 6(9):1536. doi:10.1021/acs.jpclett.5b00405

    Article  Google Scholar 

  119. Liu B, Nielsen SB, Hvelplund P, Zettergren H, Cederquist H, Manil B, Huber BA (2006) Phys Rev Lett 97(13):133401. doi:10.1103/PhysRevLett.97.133401

    Article  ADS  Google Scholar 

  120. Liu B, Haag N, Johansson H, Schmidt HT, Cederquist H, Brøndsted Nielsen S, Zettergren H, Hvelplund P, Manil B, Huber BA (2008) J Chem Phys 128(7):075102. doi:10.1063/1.2839597

  121. Berthias F, Feketeová L, Chermette H, Forquet V, Morell C, Abdoul-Carime H, Farizon B, Farizon M, Märk TD (2015) ChemPhysChem 16(15):3151. doi:10.1002/cphc.201500465

    Article  Google Scholar 

  122. Markush P, Bolognesi P, Cartoni A, Rousseau P, Maclot S, Delaunay R, Domaracka A, Kocisek J, Castrovilli MC, Huber BA, Avaldi L (2016) Phys Chem Chem Phys 18(25):16721. doi:10.1039/C6CP01940D

  123. Domaracka A, Capron M, Maclot S, Chesnel JY, Méry A, Poully JC, Rangama J, Adoui L, Rousseau P, Huber BA (2012) J Phys: Conf Ser 373(1):012005. doi:10.1088/1742-6596/373/1/012005

    ADS  Google Scholar 

  124. Kim NJ, Kim YS, Jeong G, Ahn TK, Kim SK (2002) Int J Mass Spectrom 219(1):11. doi:10.1016/S1387-3806(02)00547-X

    Article  Google Scholar 

  125. Wang FF, Zhao DX, Yang ZZ (2009) Chem Phys 360(1–3):141. doi:10.1016/j.chemphys.2009.04.022

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Rousseau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rousseau, P., Huber, B.A. (2017). Ion Collisions with Biomolecules and Biomolecular Clusters. In: Solov’yov, A. (eds) Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-43030-0_4

Download citation

Publish with us

Policies and ethics