Skip to main content

Tissue-Based Metabolomics to Analyze the Breast Cancer Metabolome

  • Chapter
  • First Online:
Metabolism in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 207))

Abstract

Mass spectrometry and nuclear magnetic resonance-based metabolomics have been developed into mature technologies that can be utilized to analyze hundreds of biological samples in a high-throughput manner. Over the past few years, both technologies were utilized to analyze large cohorts of fresh frozen breast cancer tissues. Metabolite biomarkers were shown to separate breast cancer tissues from normal breast tissues with high sensitivity and specificity. Furthermore, the metabolome differed between hormone receptor positive (HR+) and hormone receptor negative (HR−) breast cancer, but was unchanged in HER2+ tumors compared to HER2− tumors. New metabolism-related biomarkers were discovered including the 4-aminobutyrate aminotransferase ABAT, where low mRNA expression led to an accumulation of beta-alanine and shortened relapse-free survival. The glutamate-to-glutamine ratio (GGR) represents another new biomarker that was increased in 88 % of HR− tumors and 56 % of HR+ tumors compared to normal breast tissues. The GGR might help to stratify patients for the treatment with specific glutaminase inhibitors that were recently developed and are currently being tested in phase I clinical studies. Surprisingly, 2-hydroxyglutarate (2-HG), initially found to accumulate in isocitrate dehydrogenase (IDH) mutated gliomas and leukemias and described as an oncometabolite, was detected to be drastically increased in several breast carcinomas in the absence of IDH mutations. In summary, metabolomics analysis of breast cancer tissues is a reliable method and has produced many new biological insights that may impact breast cancer diagnostics and treatment over the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-HG:

2-hydroxyglutarate

ABAT:

4-aminobutyrate aminotransferase

CMP:

Cytidine-monophosphate

Cer:

Ceramide

ER:

Estrogen receptor

FDG-PET:

Fluorodeoxyglucose positron emission tomography

FFPE:

Formalin fixation and subsequent paraffin embedding

GC-TOF-MS:

Gas chromatography combined with time-of-flight mass spectrometry: a metabolomics platform suitable to investigate up to 200 identified metabolites of the primary metabolism

GGR:

Glutamate-to-glutamine ratio

GLS:

Glutaminase 1

HR:

Hormone receptor

HR-MAS-NMR:

High-resolution magic-angle spinning nuclear magnetic resonance: a metabolomics platform for nondestructive tissue analysis

IDH1, IDH2:

Isocitrate dehydrogenase 1, isocitrate dehydrogenase 2

KEGG:

Kyoto encyclopedia genes and genomes

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

PROFILE:

Projection from interaction lattice: a clustering method for the analysis of metabolite changes in the context of the network of enzymatic reactions

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PgR:

Progesterone receptor

SM:

Sphingomyelin

TG:

Triglyceride

UP-LC-MS:

Ultra performance liquid chromatography combined with mass spectrometry: a metabolomics platform for the analysis of up to 300 identified complex lipids

XDH:

Xanthine dehydrogenase

References

  • Barupal DK, Haldiya PK, Wohlgemuth G et al (2012) Metamapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinform 13:99

    Article  Google Scholar 

  • Bathen TF, Geurts B, Sitter B et al (2013) Feasibility of MR metabolomics for immediate analysis of resection margins during breast cancer surgery. PLoS ONE 8:e61578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budczies J, Brockmöller SF, Müller BM et al (2013) Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. J Proteomics 94:279–288

    Article  CAS  PubMed  Google Scholar 

  • Budczies J, Denkert C, Müller BM et al. (2010a) Metatarget—extracting key enzymes of metabolic regulation from high-throughput metabolomics data using KEGG reaction information. In: Proceedings of the German Conference on Bioinformatics, GI edn. p. 173

    Google Scholar 

  • Budczies J, Denkert C, Müller BM et al. (2010b) GC-TOF mass spectrometry reveals strong dependence of breast cancer metabolome on estrogene receptor, but not on HER2 status. In: Proceedings: AACR 101st annual meeting 2010, Cancer Research, vol. 70, p. 5573

    Google Scholar 

  • Budczies J, Denkert C, Müller BM et al (2012) Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue—a GC-TOFMS based metabolomics study. BMC Genom 13:334

    Article  CAS  Google Scholar 

  • Budczies J, Kosztyla D, von Törne C et al (2014) Cancerclass: an R package for development and validation of diagnostic tests from high-dimensional molecular data. J Stat Softw 59(1):1–19

    Article  Google Scholar 

  • Budczies J, Pfitzner BM, Györffy B et al (2015) Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer 136:1619–1628

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Altman T, Billington R et al (2014) The MetaCyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–D471

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury R, Yeoh KK, Tian Y et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  CAS  PubMed  Google Scholar 

  • Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denkert C, Bucher E, Hilvo M et al (2012) Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med 4:37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denkert C, Budczies J, Kind T et al (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66:10795–10804

    Article  CAS  PubMed  Google Scholar 

  • Denkert C, Budczies J, Weichert W et al (2008) Metabolite profiling of human colon carcinoma–deregulation of TCA cycle and amino acid turnover. Mol Cancer 7:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Fathi AT, Sadrzadeh H, Comander AH et al (2014) Isocitrate dehydrogenase 1 (IDH1) mutation in breast adenocarcinoma is associated with elevated levels of serum and urine 2-hydroxyglutarate. Oncologist 19:602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt tet2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P, Tchernyshyov I, Chang T et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman SJ, Mahieu NG, Cho K et al (2015) Evidence that 2-hydroxyglutarate is not readily metabolized in colorectal carcinoma cells. Cancer Metab 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  • German JB, Hammock BD, Watkins SM (2005) Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giskeødegård GF, Grinde MT, Sitter B et al (2010) Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res 9:972–979

    Article  PubMed  Google Scholar 

  • Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22:1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross MI, Demo SD, Dennison JB et al (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13:890–901

    Article  CAS  PubMed  Google Scholar 

  • Günther UL (2015) Metabolomics biomarkers for breast cancer. Pathobiology 82:153–165

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Haukaas TH, Moestue SA, Vettukattil R et al (2016) Impact of freezing delay time on tissue samples for metabolomic studies. Front Oncol 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilvo M, Denkert C, Lehtinen L et al (2011) Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 71:3236–3245

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328

    Article  CAS  PubMed  Google Scholar 

  • Kelly AD, Breitkopf SB, Yuan M et al (2011) Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS ONE 6:e25357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kind T, Wohlgemuth G, Lee DY et al (2009) Fiehnlib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  • Larive CK, Barding GAJ, Dinges MM (2015) NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem 87:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liesenfeld DB, Habermann N, Owen RW et al (2013) Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiol Biomarkers Prev 22:2182–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losman J, Looper RE, Koivunen P et al. (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625

    Google Scholar 

  • Ma H, Sorokin A, Mazein A et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackinnon WB, Barry PA, Malycha PL et al (1997) Fine-needle biopsy specimens of benign breast lesions distinguished from invasive cancer ex vivo with proton MR spectroscopy. Radiology 204:661–666

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  CAS  PubMed  Google Scholar 

  • Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  CAS  PubMed  Google Scholar 

  • Morin A, Letouzé E, Gimenez-Roqueplo A et al (2014) Oncometabolites-driven tumorigenesis: from genetics to targeted therapy. Int J Cancer 135:2237–2248

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  • Pluskal T, Castillo S, Villar-Briones A et al (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson MM, McBryant SJ, Tsukamoto T et al (2007) Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES). Biochem J 406:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–373

    Article  CAS  PubMed  Google Scholar 

  • Shim E, Livi CB, Rakheja D et al (2014) L-2-hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 4:1290–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  • Smolinska A, Blanchet L, Buydens LMC et al (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struys EA, Jansen EEW, Verhoeven NM et al (2004) Measurement of urinary D- and L-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography-tandem mass spectrometry after derivatization with diacetyl-L-tartaric anhydride. Clin Chem 50:1391–1395

    Article  CAS  PubMed  Google Scholar 

  • Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U. S. A. 98:10869–10874

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang X, Lin C, Spasojevic I et al (2014) A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res 16:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Tennant DA, Durán RV, Boulahbel H et al (2009) Metabolic transformation in cancer. Carcinogenesis 30:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Terunuma A, Putluri N, Mishra P et al (2014) MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 124:398–412

    Article  CAS  PubMed  Google Scholar 

  • Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Google Scholar 

  • Wang J, Erickson JW, Fuji R et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    Article  CAS  PubMed  Google Scholar 

  • Wojakowska A, Marczak Ł, Jelonek K et al (2015) An optimized method of metabolite extraction from formalin-fixed paraffin-embedded tissue for GC/MS analysis. PLoS ONE 10:e0136902

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Budczies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Budczies, J., Denkert, C. (2016). Tissue-Based Metabolomics to Analyze the Breast Cancer Metabolome. In: Cramer, T., A. Schmitt, C. (eds) Metabolism in Cancer. Recent Results in Cancer Research, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-42118-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42118-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42116-2

  • Online ISBN: 978-3-319-42118-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics