Skip to main content

Abstract

This chapter describes the optimization-based approach to analog integrated circuit (IC) sizing taken in AIDA-C. The multi-objective optimization methods implemented in AIDA-C are the non-dominated sorting genetic algorithm II (NSGA-II), the multi-objective simulated annealing (MOSA) and the multi-objective particle swarm optimization (MOPSO). Additionally, the algorithm implementations share a common interface; easing the intermingling of tentative solutions between optimization technics in order to, not only, use the different approaches by themselves, but also to explore combinations between them. Section 4.1 describes how the circuit design specifications are mapped into the multi-objective optimization problem; and Sect. 4.2 describes the optimization kernels implemented in AIDA-C. Finally, Sect. 4.3 describes how the optimization process is enhanced with the usage of machine learning techniques that automatically add design knowledge to guide the optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lourenço N, Horta N (2012) GENOM-POF: multi-objective evolutionary synthesis of analog ICs with corners validation. In: Genetic and evolutionary computation conference, Philadelphia, 2012

    Google Scholar 

  2. Debyser G, Gielen G (1998) Efficient analog circuit synthesis with simultaneous yield and robustness optimization. In: 1998 IEEE/ACM international conference on computer-aided design (ICCAD 98), San Jose, CA, 8–12 Nov 1998

    Google Scholar 

  3. Dharchoudhury A, Kang SM (1995) Worst-case analysis and optimization of VLSI circuit performances. IEEE Trans Comput Aided Des Integr Circuits Syst 14(4):481–492

    Article  Google Scholar 

  4. Antreich KJ, Graeb HE, Wieser CU (1994) Circuit analysis and optimization driven by worst-case distances. IEEE Trans Comput Aided Des Integr Circuits Syst 13(1):57–71

    Article  Google Scholar 

  5. Schwencker R, Schenkel F, Pronath M, Graeb H (2002) Analog circuit sizing using adaptive worst-case parameter sets. In: Design, automation and test in Europe conference and exhibition, Paris, 4–8 March 2002

    Google Scholar 

  6. Graeb HE (2007) Analog design centering and sizing. Springer, Netherlands

    Google Scholar 

  7. McConaghy T, Breen K, Dyck J, Gupta A (2013) Variation-aware design of custom integrated circuits: a hands-on field guide. Springer, New York

    Book  Google Scholar 

  8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  9. Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  10. Bandyopadhyay S, Saha S (2013) Some single- and multi-objective optimization techniques. Unsupervised classification. Springer, Berlin, Heidelberg, pp 17–58

    Chapter  Google Scholar 

  11. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  12. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  13. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, Perth, 1995

    Google Scholar 

  14. Montgomery DC (2001) Design and analysis of experiments, 5th edn. John Wiley and Sons, New York

    Google Scholar 

  15. Hernandez AS (2008) Breaking barriers to design dimensions in nearly orthogonal latin hypercubes. Dissertation, Naval Postgraduate School, Monterey CA

    Google Scholar 

  16. Cioppa TM, Lucas TW (2207) Efficient nearly orthogonal and space-filling latin hypercubes. Technometrics 49(1):45–55

    Google Scholar 

  17. Min-Qian Liu Jinyu Yang (2012) Construction of orthogonal and nearly orthogonal Latin hypercube designs from orthogonal designs. Statistica Sinica 22(1):433–442

    MathSciNet  MATH  Google Scholar 

  18. Nguyen Nam-Ky, Lin Dennis K J (2012) A note on near-orthogonal latin hypercubes with good space-filling properties. J Stat Theory Pract 6(3):492–500

    Article  MathSciNet  Google Scholar 

  19. Rocha F, Lourenço N, Póvoa R, Martins R, Horta N (2014) A new metaheuristc combining gradient models with NSGA-II to enhance analog IC synthesis. In: 2013 IEEE Congress on evolutionary computation, Cancun, 2013

    Google Scholar 

  20. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Lourenço .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lourenço, N., Martins, R., Horta, N. (2017). Multi-objective Optimization Kernel. In: Automatic Analog IC Sizing and Optimization Constrained with PVT Corners and Layout Effects. Springer, Cham. https://doi.org/10.1007/978-3-319-42037-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42037-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42036-3

  • Online ISBN: 978-3-319-42037-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics