Skip to main content

Multiple Myeloma Minimal Residual Disease

  • Chapter
  • First Online:
Plasma Cell Dyscrasias

Part of the book series: Cancer Treatment and Research ((CTAR,volume 169))

Abstract

Assessment of minimal residual disease (MRD) is becoming standard diagnostic care for potentially curable neoplasms such as some acute leukemias as well as chronic myeloid and lymphocytic leukemia. Although multiple myeloma (MM) remains as an incurable disease, around half of the patients achieve complete remission (CR), and recent data suggests increasing rates of curability with “total-therapy-like” programs. This landscape is likely to be improved with the advent of new antibodies and small molecules. Therefore, conventional serological and morphological techniques have become suboptimal for sensitive evaluation of highly effective treatment strategies. Although, existing data suggests that MRD could be used as a biomarker to evaluate treatment efficacy, help on therapeutic decisions, and act as surrogate for overall survival, the role of MRD in MM is still a matter of extensive debate. Here, we review the different levels of remission used to define depth of response in MM and their clinical significance, as well as the prognostic value and unique characteristics of MRD detection using immunophenotypic, molecular, and imaging techniques.

Key facts

The higher efficacy of new treatment strategies for MM demand the incorporation of highly sensitive techniques to monitor treatment efficacy

MRD could be used as a more potent surrogate biomarker for survival than standard CR

We need to understand the pros and cons of the different MRD techniques

The time has come to incorporate highly sensitive, cost-effective, readily available, and standardized MRD techniques into clinical trials to assess its role in therapeutic decisions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexanian R, Bonnet J, Gehan E, Haut A, Hewlett J, Lane M et al (1972) Combination chemotherapy for multiple myeloma. Cancer 30(2):382–389

    Article  CAS  PubMed  Google Scholar 

  2. Blade J, Samson D, Reece D, Apperley J, Bjorkstrand B, Gahrton G et al (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 102(5):1115–1123

    Article  CAS  PubMed  Google Scholar 

  3. Harousseau JL, Dimopoulos MA, Wang M, Corso A, Chen C, Attal M et al (2010) Better quality of response to lenalidomide plus dexamethasone is associated with improved clinical outcomes in patients with relapsed or refractory multiple myeloma. Haematologica 95(10):1738–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barlogie B, Anaissie E, Haessler J, van Rhee F, Pineda-Roman M, Hollmig K et al (2008) Complete remission sustained 3 years from treatment initiation is a powerful surrogate for extended survival in multiple myeloma. Cancer 113(2):355–359

    Article  PubMed  Google Scholar 

  5. Paiva B, Gutierrez NC, Rosinol L, Vidriales MB, Montalban MA, Martinez-Lopez J et al (2012) High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 119(3):687–691

    Article  CAS  PubMed  Google Scholar 

  6. Martinez-Lopez J, Blade J, Mateos MV, Grande C, Alegre A, Garcia-Larana J et al (2011) Long-term prognostic significance of response in multiple myeloma after stem cell transplantation. Blood 118(3):529–534

    Article  CAS  PubMed  Google Scholar 

  7. Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ, Crowley J (2014) Curing myeloma at last: defining criteria and providing the evidence. Blood 124(20):3043–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K et al (2006) International uniform response criteria for multiple myeloma. Leukemia 20(9):1467–1473

    Article  CAS  PubMed  Google Scholar 

  9. Kapoor P, Kumar SK, Dispenzieri A, Lacy MQ, Buadi F, Dingli D et al (2013) Importance of achieving stringent complete response after autologous stem-cell transplantation in multiple myeloma. J Clin Oncol Official J Am Soc Clin Oncol 31(36):4529–4535

    Article  Google Scholar 

  10. de Larrea CF, Cibeira MT, Elena M, Arostegui JI, Rosinol L, Rovira M et al (2009) Abnormal serum free light chain ratio in patients with multiple myeloma in complete remission has strong association with the presence of oligoclonal bands: implications for stringent complete remission definition. Blood 114(24):4954–4956

    Article  PubMed  Google Scholar 

  11. Giarin MM, Giaccone L, Sorasio R, Sfiligoi C, Amoroso B, Cavallo F et al (2009) Serum free light chain ratio, total kappa/lambda ratio, and immunofixation results are not prognostic factors after stem cell transplantation for newly diagnosed multiple myeloma. Clin Chem 55(8):1510–1516

    Article  CAS  PubMed  Google Scholar 

  12. Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E et al (2011) Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol Official J Am Soc Clin Oncol 29(12):1627–1633

    Article  CAS  Google Scholar 

  13. Ludwig H, Milosavljevic D, Zojer N, Faint JM, Bradwell AR, Hubl W et al (2013) Immunoglobulin heavy/light chain ratios improve paraprotein detection and monitoring, identify residual disease and correlate with survival in multiple myeloma patients. Leukemia 27(1):213–219

    Article  CAS  PubMed  Google Scholar 

  14. Tovar N, Fernandez de Larrea C, Elena M, Cibeira MT, Arostegui JI, Rosinol L et al (2012) Prognostic impact of serum immunoglobulin heavy/light chain ratio in patients with multiple myeloma in complete remission after autologous stem cell transplantation. Biol Blood Marrow Transplant 18(7):1076–1079

    Article  CAS  PubMed  Google Scholar 

  15. Rajkumar SV, Harousseau JL, Durie B, Anderson KC, Dimopoulos M, Kyle R et al (2011) Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood 117(18):4691–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cavo M, Tacchetti P, Patriarca F, Petrucci MT, Pantani L, Galli M et al (2010) Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 376(9758):2075–2085

    Article  CAS  PubMed  Google Scholar 

  17. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  CAS  PubMed  Google Scholar 

  18. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357(21):2123–2132

    Article  CAS  PubMed  Google Scholar 

  19. Facon T, Mary JY, Hulin C, Benboubker L, Attal M, Pegourie B et al (2007) Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial. Lancet 370(9594):1209–1218

    Article  CAS  PubMed  Google Scholar 

  20. San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Article  CAS  PubMed  Google Scholar 

  21. Rosinol L, Oriol A, Teruel AI, Hernandez D, Lopez-Jimenez J, de la Rubia J et al (2012) Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood 120(8):1589–1596

    Article  CAS  PubMed  Google Scholar 

  22. Sonneveld P, Goldschmidt H, Rosinol L, Blade J, Lahuerta JJ, Cavo M et al (2013) Bortezomib-based versus nonbortezomib-based induction treatment before autologous stem-cell transplantation in patients with previously untreated multiple myeloma: a meta-analysis of phase III randomized, controlled trials. J Clin Oncol Official J Am Soc Clin Oncol 31(26):3279–3287

    Article  CAS  Google Scholar 

  23. Gay F, Larocca A, Wijermans P, Cavallo F, Rossi D, Schaafsma R et al (2011) Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: analysis of 1175 patients. Blood 117(11):3025–3031

    Article  CAS  PubMed  Google Scholar 

  24. van de Velde HJ, Liu X, Chen G, Cakana A, Deraedt W, Bayssas M (2007) Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica 92(10):1399–1406

    Article  PubMed  Google Scholar 

  25. Usmani SZ, Crowley J, Hoering A, Mitchell A, Waheed S, Nair B et al (2013) Improvement in long-term outcomes with successive Total Therapy trials for multiple myeloma: are patients now being cured? Leukemia 27(1):226–232

    Article  CAS  PubMed  Google Scholar 

  26. Nooka AK, Kaufman JL, Muppidi S, Langston A, Heffner LT, Gleason C et al (2014) Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma patients. Leukemia 28(3):690–693

    Article  CAS  PubMed  Google Scholar 

  27. Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Spicka I, Oriol A et al (2015) Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 372(2):142–152

    Article  PubMed  Google Scholar 

  28. Morgan GJ, Davies FE, Gregory WM, Russell NH, Bell SE, Szubert AJ et al (2011) Cyclophosphamide, thalidomide, and dexamethasone (CTD) as initial therapy for patients with multiple myeloma unsuitable for autologous transplantation. Blood 118(5):1231–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palumbo A, Cavallo F, Gay F, Di Raimondo F, Ben Yehuda D, Petrucci MT et al (2014) Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 371(10):895–905

    Article  PubMed  Google Scholar 

  30. Paiva B, Vidriales MB, Rosinol L, Martinez-Lopez J, Mateos MV, Ocio EM et al (2013) A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia 27(10):2056–2061

    Article  CAS  PubMed  Google Scholar 

  31. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K et al (2007) Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 109(4):1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rawstron AC, Gregory WM, de Tute RM, Davies FE, Bell SE, Drayson MT et al (2015) Minimal residual disease in myeloma by flow cytometry: independent prediction of survival benefit per log reduction. Blood 125(12):1932–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R et al (2014) Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 123(20):3073–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ladetto M, Pagliano G, Ferrero S, Cavallo F, Drandi D, Santo L et al (2010) Major tumor shrinking and persistent molecular remissions after consolidation with bortezomib, thalidomide, and dexamethasone in patients with autografted myeloma. J Clin Oncol 28(12):2077–2084

    Article  CAS  PubMed  Google Scholar 

  35. Paiva B, Puig N, Garcia-Sanz R, San Miguel JF (2015) Is this the time to introduce minimal residual disease in multiple myeloma clinical practice? Clin Cancer Res

    Google Scholar 

  36. San Miguel JF, Almeida J, Mateo G, Blade J, Lopez-Berges C, Caballero D et al (2002) Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 99(5):1853–1856

    Article  PubMed  Google Scholar 

  37. Rawstron AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT et al (2002) Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 100(9):3095–3100

    Article  CAS  PubMed  Google Scholar 

  38. Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA et al (2008) Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 112(10):4017–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE et al (2013) Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol Official J Am Soc Clin Oncol 31(20):2540–2547

    Article  Google Scholar 

  40. Mateos MV, Oriol A, Martinez-Lopez J, Teruel AI, Lopez de la Guia A, Lopez J et al (2014) Update of the GEM2005 trial comparing VMP/VTP as induction in elderly multiple myeloma patients: do we still need alkylators? Blood

    Google Scholar 

  41. Thiago LS, Perez-Andres M, Balanzategui A, Sarasquete ME, Paiva B, Jara-Acevedo M et al (2014) Circulating clonotypic B cells in multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica 99(1):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roussel M, Lauwers-Cances V, Robillard N, Hulin C, Leleu X, Benboubker L et al (2014) Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myelome. J Clin Oncol 32(25):2712–2717

    Article  CAS  PubMed  Google Scholar 

  43. Paiva (2014) Haematologica. 2015 Feb 100(2):e53–5. Epub 2014 Nov 7. No abstract available. PMID: 25381128 . doi: 10.3324/haematol.2014.115162

    Google Scholar 

  44. Martinelli G, Terragna C, Zamagni E, Ronconi S, Tosi P, Lemoli RM et al (2000) Molecular remission after allogeneic or autologous transplantation of hematopoietic stem cells for multiple myeloma. J Clin Oncol 18(11):2273–2281

    CAS  PubMed  Google Scholar 

  45. Bakkus (2004) Br J Haematol. 2004 Sept 126(5):665–74. PMID: 15327517

    Google Scholar 

  46. Galimberti (2005) Leuk Res. 2005 Aug 29(8):961–6. PMID: 15978948

    Google Scholar 

  47. Sarasquete ME, Garcia-Sanz R, Gonzalez D, Martinez J, Mateo G, Martinez P et al (2005) Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica 90(10):1365–1372

    CAS  PubMed  Google Scholar 

  48. Martinez-Sanchez P, Montejano L, Sarasquete ME, Garcia-Sanz R, Fernandez-Redondo E, Ayala R et al (2008) Evaluation of minimal residual disease in multiple myeloma patients by fluorescent-polymerase chain reaction: the prognostic impact of achieving molecular response. Br J Haematol 142(5):766–774

    Article  CAS  PubMed  Google Scholar 

  49. Putkonen M, Kairisto V, Juvonen V, Pelliniemi TT, Rauhala A, Itala-Remes M et al (2010) Depth of response assessed by quantitative ASO-PCR predicts the outcome after stem cell transplantation in multiple myeloma. Eur J Haematol 85(5):416–423

    Article  PubMed  Google Scholar 

  50. Ferrero (2014) Leukemia. 2015 Mar 29(3):689–95. Epub 2014 Jul 16. PMID: 25027515. doi: 10.1038/leu.2014.219

    Google Scholar 

  51. Puig N, Sarasquete ME, Balanzategui A, Martinez J, Paiva B, Garcia H et al (2014) Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia 28(2):391–397

    Article  CAS  PubMed  Google Scholar 

  52. Silvennoinen R, Lundan T, Kairisto V, Pelliniemi TT, Putkonen M, Anttila P et al (2014) Comparative analysis of minimal residual disease detection by multiparameter flow cytometry and enhanced ASO RQ-PCR in multiple myeloma. Blood Cancer J 10(4):e250

    Article  Google Scholar 

  53. Hillengass J, Ayyaz S, Kilk K, Weber MA, Hielscher T, Shah R et al (2012) Changes in magnetic resonance imaging before and after autologous stem cell transplantation correlate with response and survival in multiple myeloma. Haematologica 97(11):1757–1760

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A et al (2011) Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 118(23):5989–5995

    Article  CAS  PubMed  Google Scholar 

  55. Flanders A, Stetler-Stevenson M, Landgren O (2013) Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood 122(6):1088–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pedreira CE, Costa ES, Lecrevisse Q, van Dongen JJ, Orfao A (2013) EuroFlow consortium. Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol 31(7):415–425

    Google Scholar 

  57. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17(6):1013–1034

    Article  PubMed  Google Scholar 

  58. Corradini P, Carniti C (2014) Molecular methods for detection of minimal residual disease following transplantation in lymphoid and plasma cell disorders. Methods Mol Biol 1109:209–237

    Article  CAS  PubMed  Google Scholar 

  59. Korthals M, Sehnke N, Kronenwett R, Schroeder T, Strapatsas T, Kobbe G et al (2013) Molecular monitoring of minimal residual disease in the peripheral blood of patients with multiple myeloma. Biol Blood Marrow Transplant 19(7):1109–1115

    Article  CAS  PubMed  Google Scholar 

  60. Lipinski E, Cremer FW, Ho AD, Goldschmidt H, Moos M (2001) Molecular monitoring of the tumor load predicts progressive disease in patients with multiple myeloma after high-dose therapy with autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 28(10):957–962

    Article  CAS  PubMed  Google Scholar 

  61. Ferrero S, Ladetto M, Drandi D, Cavallo F, Genuardi E, Urbano M et al (2015) Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics’ impact on survival. Leukemia 29(3):689–695

    Article  CAS  PubMed  Google Scholar 

  62. Gambella M, Omedè P, Oliva S, Gilestro M, Muccio VE, Drandi D et al (2014) In Multiple Myeloma, Minimal Residual Disease (MRD) Is an Early Predictor of Progression and Is Modulated By Maintenance Therapy with Lenalidomide. Blood Am Soc Hematol 124(21):3394–3394

    Google Scholar 

  63. Langerak AW, Groenen PJ, Bruggemann M, Beldjord K, Bellan C, Bonello L et al (2012) EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 26(10):2159–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Biran N, Ely S, Chari A (2014) Controversies in the assessment of minimal residual disease in multiple myeloma: clinical significance of minimal residual disease negativity using highly sensitive techniques. Curr Hematol Malign Rep 9(4):368–378

    Article  Google Scholar 

  65. Garcia-Sanz R, Lopez-Perez R, Langerak AW, Gonzalez D, Chillon MC, Balanzategui A et al (1999) Heteroduplex PCR analysis of rearranged immunoglobulin genes for clonality assessment in multiple myeloma. Haematologica 84(4):328–335

    CAS  PubMed  Google Scholar 

  66. Gonzalez D, Garcia-Sanz R (2005) Incomplete DJH rearrangements. Methods Mol Med 113:165–173

    CAS  PubMed  Google Scholar 

  67. Puig N, Sarasquete ME, Alcoceba M, Balanzategui A, Chillon MC, Sebastian E et al (2013) The use of CD138 positively selected marrow samples increases the applicability of minimal residual disease assessment by PCR in patients with multiple myeloma. Ann Hematol 92(1):97–100

    Article  CAS  PubMed  Google Scholar 

  68. Boyd SD, Gaeta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD et al (2010) Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol 184(12):6986–6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA (2009) Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 19(10):1817–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J, Reijonen H et al (2012) Ultra-sensitive detection of rare T cell clones. J Immunol Methods 375(1–2):14–19

    Article  CAS  PubMed  Google Scholar 

  71. Logan AC, Zhang B, Narasimhan B, Carlton V, Zheng J, Moorhead M et al (2013) Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia 27(8):1659–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Faham M, Zheng J, Moorhead M, Carlton VE, Stow P, Coustan-Smith E et al (2012) Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 120(26):5173–5180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B et al (2009) Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 1(12):12ra23

    Google Scholar 

  74. Puig N, Conde I, Jimenez C, Sarasquete ME, Balanzategui A, Alcoceba M et al (2015) The predominant myeloma clone at diagnosis, CDR3 defined, is constantly detectable across all stages of disease evolution. Leukemia

    Google Scholar 

  75. Munshi NC, Minvielle S, Tai Y, Fulciniti M, Richardson PG, Attal M et al (2014) Deep sequencing of immunoglobulin loci reveals evolution of IgH clone in multiple myeloma patients over the course of treatment. Blood Am Soc Hematol 124(21):2005–2005

    Google Scholar 

  76. Avet-Loiseau H, Corre J, Maheo S, Zheng J, Faham M, Richardson PG et al (2014) Identification rate of myeloma-specific clonotypes in multiple diagnostic sample types from patients with multiple myeloma using next-generation sequencing method. Blood Am Soc Hematol 124(21):2036–2036

    Google Scholar 

  77. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–2317

    Article  PubMed  Google Scholar 

  78. Takamatsu H, Murata R, Zheng J, Moorhead M, Takezako N, Ito S et al (2014) Prognostic value of sequencing-based minimal residual disease detection in multiple myeloma. Blood Am Soc Hematol 124(21):2003–2003

    Google Scholar 

  79. Jasielec J, Dytfeld D, Griffith KA, McDonnell K, Lebovic D, Kandarpa M et al (2014) Minimal residual disease status predicts progression-free survival in Newly Diagnosed Multiple Myeloma (NDMM) patients treated with carfilzomib, lenalidomide, and low-dose dexamethasone (KRd). Blood Am Soc Hematol 124(21):2127–2127

    Google Scholar 

  80. Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zamagni E, Cavo M (2012) The role of imaging techniques in the management of multiple myeloma. Br J Haematol 159(5):499–513

    PubMed  Google Scholar 

  82. Bauerle T, Hillengass J, Fechtner K, Zechmann CM, Grenacher L, Moehler TM et al (2009) Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology 252(2):477–485

    Article  PubMed  Google Scholar 

  83. Caers J, Withofs N, Hillengass J, Simoni P, Zamagni E, Hustinx R et al (2014) The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma. Haematologica 99(4):629–637

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hillengass J, Bauerle T, Bartl R, Andrulis M, McClanahan F, Laun FB et al (2011) Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol 153(6):721–728

    Article  PubMed  Google Scholar 

  85. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K et al (2015) Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol

    Google Scholar 

  86. Kubiczkova-Besse L, Drandi D, Sedlarikova L, Oliva S, Gambella M, Omedè P et al (2014) Cell-free DNA for minimal residual disease monitoring in multiple myeloma patients. Blood Am Soc Hematol 124(21):3423–3423

    Google Scholar 

  87. Korde N, Mailankody S, Roschewski M, Faham M, Kotwaliwale C, Moorhead M et al (2014) Minimal Residual Disease (MRD) Testing in newly diagnosed multiple myeloma (MM) patients: a prospective head-to-head assessment of cell-based, molecular, and molecular-imaging modalities

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús F. San Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paiva, B., García-Sanz, R., San Miguel, J.F. (2016). Multiple Myeloma Minimal Residual Disease. In: Roccaro, A., Ghobrial, I. (eds) Plasma Cell Dyscrasias. Cancer Treatment and Research, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-40320-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40320-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40318-2

  • Online ISBN: 978-3-319-40320-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics