Skip to main content

Role of Endothelial Cells and Fibroblasts in Multiple Myeloma Angiogenic Switch

  • Chapter
  • First Online:
Plasma Cell Dyscrasias

Part of the book series: Cancer Treatment and Research ((CTAR,volume 169))

Abstract

Multiple myeloma (MM) mainly progresses in bone marrow (BM). Therefore, signals from the BM microenvironment are thought to play a critical role in maintaining plasma cell growth, migration, and survival. Reciprocal positive and negative interactions between plasma cells and microenvironmental cells, including endothelial cells (ECs) and fibroblasts may occur. The BM neovascularization is a constant hallmark of MM, and goes hand in hand with progression to leukemic phase. Microenvironmental factors induce MMECs and fibroblasts to become functionally different from monoclonal gammopathy of undetermined significance (MGUS) ECs (MGECs), i.e., to acquire an overangiogenic phenotype, and be similar to transformed cells. These alterations play an important role in MM progression and may represent new molecular markers for prognostic stratification of patients and prediction of response to antiangiogenic drugs, as well as new potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  CAS  PubMed  Google Scholar 

  2. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  3. Barosi G, Merlini G, Billio A et al (2012) SIE, SIES, GIT MO evidence-based guidelines on novel agents (thalidomide, bortezomib, and lenalidomide) in the treatment of multiple myeloma. Ann Hematol 91:875–888

    Article  CAS  PubMed  Google Scholar 

  4. Berardi S, Caivano A, Ria R et al (2012) Four proteins governing overangiogenic endothelial cell phenotype in patients with multiple myeloma are plausible therapeutic targets. Oncogene 31:2258–2269

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Tredget EE, Wu PYG et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3(4):e1886

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31:195–208

    Article  PubMed  Google Scholar 

  7. Coluccia AM, Cirulli T, Neri T et al (2008) Validation of PDGFRβ and C-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inihibitor dasatinib. Blood 112:1346–1356

    Article  CAS  PubMed  Google Scholar 

  8. Davies FE, Raje N, Hideshima T et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216

    Article  CAS  PubMed  Google Scholar 

  9. Dimopoulos S, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132

    Google Scholar 

  10. Dimopoulos MA, Kastritis E, Christoulas D et al (2010) Treatment of patients with relapsed/refractory multiple myeloma with lenalidomide and dexametasone with or without bortezomib: prospective evaluation of the impact of cytogenetic abnormalities and of previous therapies. Leukemia 24:1769–1778

    Google Scholar 

  11. Dredge K, Horsfall R, Robinson SP et al (2005) Orally administered lenalidomide (CC-5013) is anti angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 69:56–63

    Article  CAS  PubMed  Google Scholar 

  12. Du W, Hattori Y, Hashiquuchi A et al (2004) Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alterations by thalidomide treatment. Pathol Int 54:285–294

    Article  CAS  PubMed  Google Scholar 

  13. Ferrucci A, Moschetta A, Frassanito MA et al (2014) A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res 20(22):5796–5807

    Article  CAS  PubMed  Google Scholar 

  14. Franco OE, Shaw AK, Strand DW et al (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39

    Article  CAS  PubMed  Google Scholar 

  15. Frassanito MA, Rao L, Moschetta M et al (2014) Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia 28:904–916

    Article  CAS  PubMed  Google Scholar 

  16. Görgϋn G, Calabrese E, Soydan E et al (2010) Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 116:3227–3237

    Article  Google Scholar 

  17. Henk HJ, Teitelbaum A, Perez JR et al (2012) Persistency with zoledronic acid is associated with clinical benefit in patients with multiple myeloma. Am J Hematol 87:490–495

    Article  CAS  PubMed  Google Scholar 

  18. Hideshima T, Chauhan D, Hayashi T et al (2003) Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 22:8386–8393

    Article  CAS  PubMed  Google Scholar 

  19. Hideshima T, Mitsiades C, Tonon G et al (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 8:585–598

    Article  Google Scholar 

  20. Jian GR, Chunfa J, Conove T (2005) How PEDF prevents angiogenesis: a hypothesized pathway. Med Hypothesis 64:74–78

    Article  Google Scholar 

  21. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–3401

    Article  CAS  PubMed  Google Scholar 

  22. Kidd S, Spaeth E, Watson K et al (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE 7(2):e30563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koehne C-H, Dubois RN (2004) COX-2 inhibition and colorectal cancer. Semin Oncol 31(2 Suppl 7):12–21

    Article  CAS  PubMed  Google Scholar 

  24. Kopp H-G, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20:349–356

    Article  CAS  Google Scholar 

  25. Kovacs MJ, Reece DE, Marcellus D et al (2006) A phase II study of ZD6474 (Zactima), a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma. Invest New Durgs 24:529–535

    CAS  Google Scholar 

  26. Krause DS (2002) Regulation of hematopoietic stem cell fate. Oncogene 21:3262–3269

    Article  CAS  PubMed  Google Scholar 

  27. Loflin J, Lopez N, Whanger PD et al (2006) Selenoprotein W during development and oxidative stress. J Inorg Biochem 100:1679–1884

    Article  CAS  PubMed  Google Scholar 

  28. Lu L, Payvandi F, Wu L et al (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77:78–86

    Article  CAS  PubMed  Google Scholar 

  29. De Luisi A, Ferrucci A, Coluccia AM et al (2011) Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res 17(7):1935–1946

    Article  PubMed  Google Scholar 

  30. Mangieri D, Nico B, Benagiano V et al (2008) Angiogenic activity of multiple myeloma endothelial cells in vivo in the chick embryo chorioallantoic membrane assay is associated to a down-regulation in the expression of endogenous endostatin. J Cell Mol Med 12:1023–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530

    Article  CAS  PubMed  Google Scholar 

  32. Mizukami Y, Fujiki K, Duerr EM et al (2006) Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol3-kinase/Rho/ROCK and c-Myc. J Biol Chem 281:13957–13963

    Article  CAS  PubMed  Google Scholar 

  33. Morgan GJ, Davies FE, Gregory WM et al (2012) Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: MRC Myeloma IX trial. Blood 119:5374–5383

    Article  CAS  PubMed  Google Scholar 

  34. Moschetta M, Di Pietro G, Ria R et al (2010) Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. Eur J Cancer 46:420–429

    Article  CAS  PubMed  Google Scholar 

  35. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  CAS  PubMed  Google Scholar 

  36. Pellegrino A, Ria R, Di Pietro G et al (2005) Bone marrow endothelial cells in multiple myeloma secrete CXC chemokines that mediate interactions with plasma cells. Br J Haematol 129:248–256

    Article  CAS  PubMed  Google Scholar 

  37. Podar K, Tonon G, Sattler M et al (2006) The small molecule VEGF receptor inhibitor pazopanib (GW 786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA 103:19478–19483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prince HM, Hanemann D, Spencer A et al (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW 786034). Blood 113:4819–4820

    Article  CAS  PubMed  Google Scholar 

  39. Rajkumar SV, Sonneveld P (2009) Front-line treatment in younger patients with multiple myeloma. Semin Hematol 46:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramakrishnan V, Timm M, Haug JL et al (2010) Sorafenib, a dual rafkinase/vascular endothelial growth factor receptor inhibitor has significantly anti-myleoma activity and synergizes with common anti-myeloma drugs. Oncogene 29:1190–1202

    Article  CAS  PubMed  Google Scholar 

  41. Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316:2713–2722

    Article  PubMed  Google Scholar 

  42. Ria R, Piccoli C, Cirulli T et al (2008) Endothelial differentiation of hematopoietic stem cells and progenitor cells from patients with multiple myeloma. Clin Cancer Res 14:1678–1685

    Article  CAS  PubMed  Google Scholar 

  43. Ria R, Todoerti K, Berardi S et al (2009) Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma. Clin Cancer Res 15:5369–5378

    Article  CAS  PubMed  Google Scholar 

  44. Ribatti D (2013) Mast cells and macrophages exert beneficial and detrimental effects on tumor progression and angiogenesis. Immunol Lett 152:83–88

    Article  CAS  PubMed  Google Scholar 

  45. Ribatti D, Nico B, Crivellato E et al (2007) The history of the angiogenic switch concept. Leukemia 21:44–52

    Article  CAS  PubMed  Google Scholar 

  46. Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25:4257–4266

    Article  CAS  PubMed  Google Scholar 

  47. Ribatti D, Vacca A (2005) Therapeutic renaissance of thalidomide in the treatment of haematological malignancies. Leukemia 19:1525–1531

    Article  CAS  PubMed  Google Scholar 

  48. Ribatti D, Vacca A (2009) The role of monocytes-macrophages in vasculogenesis in multiple myeloma. Leukemia 23:1535–1536

    Article  CAS  PubMed  Google Scholar 

  49. Roccaro AM, Hideshima T, Raje N et al (2006) Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 66:184–191

    Article  CAS  PubMed  Google Scholar 

  50. Scavelli C, Di Pietro G, Cirulli T et al (2007) Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma. Mol Cancer Ther 6:3256–3262

    Article  CAS  PubMed  Google Scholar 

  51. Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Somlo G, Lashkari A, Bellamy W et al (2011) Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for replasped/refractory multiple myeloma: a Californnia Cancer Consortium trial. Br J Haematol 154:533–535

    Article  PubMed  PubMed Central  Google Scholar 

  53. Spaeth EL, Dembinski JL, Sasser AK et al (2009) Mesenchymal stem cell transition to tumor associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE 4(4):e4992

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20:193–199

    Article  CAS  PubMed  Google Scholar 

  55. Vacca A, Scavelli C, Montefusco V et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23:5534–5546

    Article  Google Scholar 

  56. Vacca A, Semeraro F, Merchionne F et al (2003) Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102:3340–3348

    Article  CAS  PubMed  Google Scholar 

  57. Vij R, Ansstas G, Mosley JC et al (2010) Efficacy and tolerability of PTK787/ZK222584 in a phase II study of post-transplant maintenance therapy in patients with multiple myeloma following high-dose chemotherapy and autologous stem cell transplant. Leuk Lymphoma 51:1577–1579

    Article  CAS  PubMed  Google Scholar 

  58. Volpert OV, Zaichuk T, Zhow W et al (2002) Inducer-stimulated Fas targets activated endothelium for destruction by antiangiogenic thrombospondin-1 and pigment epithelium derived factor. Nat Med 8:349–357

    Article  CAS  PubMed  Google Scholar 

  59. De Vos J, Thykjaer T, Tarte K et al (2002) Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 21:6848–6857

    Article  PubMed  Google Scholar 

  60. Wang M, Dimopoulos MA, Chen C et al (2008) Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure. Blood 112:4445–4451

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Hoque A, Luo RZ et al (2003) Loss of the expression of the tumor suppressor gene ARHI is associated with progression of breast cancer. Clin Cancer Res 9:3660–3666

    CAS  PubMed  Google Scholar 

  62. Weber DM, Chen C, Niesvizky R et al (2007) Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 357:2133–2142

    Article  CAS  PubMed  Google Scholar 

  63. De Wever O, Van Bockstal M, Mareel M et al (2014) Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 25:33–46

    Article  PubMed  Google Scholar 

  64. Williams S, Pettaway C, Song R et al (2003) Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther 2:835–843

    CAS  PubMed  Google Scholar 

  65. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:9093–9106

    Article  Google Scholar 

  66. Wu MX, Ao Z, Prasad KV et al (1998) IEX-1L, an apoptosis inhibitor involved in NF kB-mediated cell survival. Science 281:998–1001

    Article  CAS  PubMed  Google Scholar 

  67. Zangari M, Anaissie E, Stopeck A et al (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor in patients with refractory multiple myeloma. Clin Cancer Res 10:88–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 278570 to DR and no. 278706 to AV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Domenico Ribatti or Angelo Vacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ribatti, D., Vacca, A. (2016). Role of Endothelial Cells and Fibroblasts in Multiple Myeloma Angiogenic Switch. In: Roccaro, A., Ghobrial, I. (eds) Plasma Cell Dyscrasias. Cancer Treatment and Research, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-40320-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40320-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40318-2

  • Online ISBN: 978-3-319-40320-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics