Skip to main content

Waldenstrom Macroglobulinemia: Genomic Aberrations and Treatment

  • Chapter
  • First Online:
Plasma Cell Dyscrasias

Part of the book series: Cancer Treatment and Research ((CTAR,volume 169))

Abstract

Waldenström macroglobulinemia (WM) is a rare, indolent, and monoclonal immunoglobulin M-associated lymphoplasmacytic disorder with unique clinicopathologic characteristics. Over the past decade, remarkable progress has occurred on both the diagnostic and therapeutic fronts in WM. A deeper understanding of the disease biology emanates from the seminal discoveries of myeloid differentiation primary response 88 (MYD88) L265P somatic mutation in the vast majority of cases and C-X-C chemokine receptor, type 4, mutations in about a third of patients. Although WM remains an incurable malignancy, and the indications to initiate treatment are largely unchanged, the therapeutic armamentarium continues to expand. Acknowledging the paucity of high-level evidence from large randomized controlled trials, herein, we evaluate the genomic aberrations and provide a strategic framework for the management in the frontline as well as the relapsed/refractory settings of symptomatic WM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldenström J (1944) Incipient myelomatosis or ‘essential’ hyperglobulinemia with fibrinogenopenia a new syndrome?. Acta Medica Scandinaviva CXVII:217–246

    Google Scholar 

  2. Swerdlow S et al (ed) (2008) WHO Classification of tumors of haematopoietic and lymphoid tissues, Page 194, International Agency for Research on Cancer 2008

    Google Scholar 

  3. Owen RG et al (2003) Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on waldenstrom’s macroglobulinemia. Semin Oncol 30(2):110–115

    Article  PubMed  Google Scholar 

  4. Kyle RA et al (2011) IgM monoclonal gammopathy of undetermined significance (MGUS) and smoldering Waldenstrom’s macroglobulinemia (SWM). Clin Lymphoma Myeloma Leuk 11(1):74–76

    Article  CAS  PubMed  Google Scholar 

  5. Kyle RA et al (2003) Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood 102(10):3759–3764

    Article  CAS  PubMed  Google Scholar 

  6. Ansell SM et al (2010) Diagnosis and management of Waldenstrom macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clinic Proc Mayo Clinic 85(9):824–833

    Article  Google Scholar 

  7. Nelson S. et al (2013) Changing epidemiology and improved survival in patients with waldenstrom macroglobulinemia: review of surveillance, epidemiology, and end results (SEER). Data122:3135-3135

    Google Scholar 

  8. Aoki H et al (1995) Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenstrom’s macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter’s syndrome but not in common CLL. Blood 85(7):1913–1919

    CAS  PubMed  Google Scholar 

  9. Martin-Jimenez P et al (2007) Molecular characterization of heavy chain immunoglobulin gene rearrangements in Waldenstrom’s macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Haematologica 92(5):635–642

    Article  CAS  PubMed  Google Scholar 

  10. Royer RH et al (2010) Differential characteristics of Waldenstrom macroglobulinemia according to patterns of familial aggregation. Blood 115(22):4464–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagner SD, Martinelli V, Luzzatto L (1994) Similar patterns of V kappa gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenstrom’s macroglobulinemia, and myeloma. Blood 83(12):3647–3653

    CAS  PubMed  Google Scholar 

  12. Kristinsson SY et al (2012) Familial aggregation of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia with solid tumors and myeloid malignancies. Acta Haematol 127(3):173–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Treon SP et al (2006) Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol Official J Eur Soc Med Oncol ESMO 17(3):488–494

    Article  CAS  Google Scholar 

  14. McMaster ML (2003) Familial Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):146–152

    Article  CAS  PubMed  Google Scholar 

  15. Kristinsson SY et al (2008) Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia patients: a population-based study in Sweden. Blood 112(8):3052–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang H et al (2012) Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study. Cancer 118(15):3793–3800

    Article  PubMed  Google Scholar 

  17. Ghobrial IM et al (2006) Prognostic model for disease-specific and overall mortality in newly diagnosed symptomatic patients with Waldenstrom macroglobulinaemia. Br J Haematol 133(2):158–164

    Article  PubMed  Google Scholar 

  18. Kyle RA et al (2003) Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 30(2):116–120

    Article  PubMed  Google Scholar 

  19. Kyle RA et al (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346(8):564–569

    Article  PubMed  Google Scholar 

  20. McMaster ML (2003) Familial Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):146–152

    Article  CAS  PubMed  Google Scholar 

  21. McMaster ML (2003) Familial Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):146–152

    Article  CAS  PubMed  Google Scholar 

  22. McMaster ML et al (2006) Genomewide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families. Am J Hum Genet 79(4):695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Treon SP et al (2006) Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol 17(3):488–494

    Article  CAS  PubMed  Google Scholar 

  24. Treon SP et al (2012) Familial disease predisposition impacts treatment outcome in patients with Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk 12(6):433–437

    Article  PubMed  Google Scholar 

  25. Royer RH et al (2010) Differential characteristics of Waldenstrom macroglobulinemia according to patterns of familial aggregation. Blood 115(22):4464–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grass S et al (2011) Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenstrom macroglobulinemia. Blood 117(10):2918–2923

    Article  CAS  PubMed  Google Scholar 

  27. Owen RG et al (2001) Waldenstrom macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors. Am J Clin Pathol 116(3):420–428

    Article  CAS  PubMed  Google Scholar 

  28. Owen RG et al (2003) Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on waldenstrom’s macroglobulinemia. Semin Oncol 30(2):110–115

    Article  PubMed  Google Scholar 

  29. San Miguel JF (2003) Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):187–195

    Article  CAS  PubMed  Google Scholar 

  30. Ahmann GJ et al (1998) A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. Cancer Genet Cytogenet 101(1):7–11

    Article  CAS  PubMed  Google Scholar 

  31. Braggio E et al (2009) Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom’s macroglobulinemia. Cancer Res 69(8):3579–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Braggio E et al (2009) High-resolution genomic analysis in Waldenstrom’s macroglobulinemia identifies disease-specific and common abnormalities with marginal zone lymphomas. Clin Lymphoma Myeloma 9(1):39–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen-Khac F et al (2013) Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom’s macroglobulinemia. Haematologica 98(4):649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poulain S et al (2011) High-throughput genomic analysis in Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 11(1):106–108

    Article  CAS  PubMed  Google Scholar 

  35. Schop RF et al (2006) 6q deletion discriminates Waldenstrom macroglobulinemia from IgM monoclonal gammopathy of undetermined significance. Cancer Genet Cytogenet 169(2):150–153

    Article  CAS  PubMed  Google Scholar 

  36. Terre C et al (2006) Trisomy 4, a new chromosomal abnormality in Waldenstrom’s macroglobulinemia: a study of 39 cases. Leukemia 20(9):1634–1636

    Article  CAS  PubMed  Google Scholar 

  37. Mansoor A et al (2001) Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol 116(4):543–549

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira BI et al (2008) Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica 93(5):670–679

    Article  CAS  PubMed  Google Scholar 

  39. Kay NE et al (2011) Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genet Cytogenet 203(2):161–168

    Article  CAS  Google Scholar 

  40. Ouillette P et al (2011) Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood 118(11):3051–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braggio E et al (2012) Genomic analysis of marginal zone and lymphoplasmacytic lymphomas identified common and disease-specific abnormalities. Mod Pathol 25(5):651–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rinaldi A et al (2011) Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 117(5):1595–1604

    Article  CAS  PubMed  Google Scholar 

  43. Annunziata CM et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carrasco DR et al (2006) High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9(4):313–325

    Article  CAS  PubMed  Google Scholar 

  45. Keats JJ et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poulain S et al (2013) Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am J Hematol 88(11):948–954

    Article  CAS  PubMed  Google Scholar 

  47. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Calin GA et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Compagno M et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459(7247):717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Novak U et al (2009) The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113(20):4918–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ocio EM et al (2007) 6q deletion in Waldenstrom macroglobulinemia is associated with features of adverse prognosis. Br J Haematol 136(1):80–86

    Article  CAS  PubMed  Google Scholar 

  52. Chang H et al (2007) Analysis of 6q deletion in Waldenstrom macroglobulinemia. Eur J Haematol 79(3):244–247

    Article  CAS  PubMed  Google Scholar 

  53. Schop RF et al (2002) Deletions of 17p13.1 and 13q14 are uncommon in Waldenstrom macroglobulinemia clonal cells and mostly seen at the time of disease progression. Cancer Genet Cytogenet 132(1):55–60

    Article  CAS  PubMed  Google Scholar 

  54. Schop RF et al (2002) Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 100(8):2996–3001

    Google Scholar 

  55. Chang H et al (2004) Analysis of IgH translocations, chromosome 13q14 and 17p13.1(p53) deletions by fluorescence in situ hybridization in Waldenstrom’s macroglobulinemia: a single center study of 22 cases. Leukemia 18(6):1160–1162

    Article  CAS  PubMed  Google Scholar 

  56. Braggio E et al (2012) Longitudinal genome-wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse. Leukemia 26(7):1698–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keats JJ et al (2012) Clonal competition with alternating dominance in multiple myeloma. Blood 120(5):1067-1076

    Google Scholar 

  58. Knight SJ et al (2012) Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 26(7):1564–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Landau D et al (2013) The evolution and impact of sublconal mutations in chronic lymphocytic leukemia. Cell 152(4):714–726

    Google Scholar 

  60. Schuh A et al (2012) Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120(20):4191–4196

    Google Scholar 

  61. Ouillette P et al (2013) Clonal evolution, genomic drivers, and effects of therapy in chronic lymphocytic leukemia. Clin Cancer Res 19(11):2893–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Treon SP et al (2012) MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med 367(9):826–833

    Article  CAS  PubMed  Google Scholar 

  63. Muzio M et al (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278(5343):1612–1615

    Article  CAS  PubMed  Google Scholar 

  64. Wesche H et al (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7(6):837–847

    Article  CAS  PubMed  Google Scholar 

  65. Ngo VN et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470(7332):115–119

    Article  CAS  PubMed  Google Scholar 

  66. Morin RD et al (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasqualucci L et al (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43(9):830–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ansell SM et al (2014) Activation of TAK1 by MYD88 L265P drives malignant B-cell Growth in non-Hodgkin lymphoma. Blood Cancer J 4:e183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gachard N et al (2013) IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia 27(1):183–189

    Article  CAS  PubMed  Google Scholar 

  70. Jimenez C et al (2013) MYD88 L265P is a marker highly characteristic of, but not restricted to. Waldenstrom’s macroglobulinemia. Leukemia 27(8):1722–1728

    Article  CAS  PubMed  Google Scholar 

  71. Landgren O, Staudt L (2012) MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med 367(23): 2255–2256; author reply 2256–2257

    Google Scholar 

  72. Varettoni M et al (2013) Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 121(13):2522–2528

    Article  CAS  PubMed  Google Scholar 

  73. Xu L et al (2013) MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 121(11):2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Poulain S et al (2013) MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood 121(22):4504–4511

    Article  CAS  PubMed  Google Scholar 

  75. Hunter ZR et al (2014) The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 123(11):1637–1646

    Article  CAS  PubMed  Google Scholar 

  76. Fonseca R, Braggio E (2013) The MYDas touch of next-gen sequencing. Blood 121(13):2373–2374

    Article  CAS  PubMed  Google Scholar 

  77. Xu L et al (2014) Detection of MYD88 L265P in peripheral blood of patients with Waldenstrom’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia 28(8):1698–1704

    Article  CAS  PubMed  Google Scholar 

  78. Treon SP et al (2014) Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 123(18):2791–2796

    Article  CAS  PubMed  Google Scholar 

  79. Yang G et al (2013) A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 122(7):1222–1232

    Article  CAS  PubMed  Google Scholar 

  80. Advani RH et al (2013) Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 31(1):88–94

    Article  CAS  PubMed  Google Scholar 

  81. Roccaro AM et al (2014) C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood 123(26):4120–4131

    Article  CAS  PubMed  Google Scholar 

  82. Chng WJ et al (2006) Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood 108(8):2755–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gutierrez NC et al (2007) Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia 21(3):541–549

    Google Scholar 

  84. Hodge LS, Ansell SM (2011) Jak/Stat pathway in Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 11(1):112–114

    Article  CAS  PubMed  Google Scholar 

  85. Roccaro AM et al (2009) microRNA expression in the biology, prognosis, and therapy of Waldenstrom macroglobulinemia. Blood 113(18):4391–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sacco A et al (2010) Epigenetic modifications as key regulators of Waldenstrom’s Macroglobulinemia biology. J Hematol Oncol 3:38

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sacco A et al (2013) microRNA Aberrations in Waldenstrom Macroglobulinemia. Clin Lymphoma Myeloma Leuk

    Google Scholar 

  88. Roccaro AM et al (2010) microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 116(9):1506–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dhodapkar MV et al (2003) Prognostic factors and response to fludarabine therapy in Waldenstrom’s macroglobulinemia: an update of a US intergroup trial (SW0G S9003). Semin Oncol 30(2):220–225

    Article  PubMed  Google Scholar 

  90. Morel P et al (2009) International prognostic scoring system for Waldenstrom macroglobulinemia. Blood 113(18):4163–4170

    Article  CAS  PubMed  Google Scholar 

  91. Kastritis E et al (2010) Validation of the International prognostic scoring system (IPSS) for Waldenstrom’s macroglobulinemia (WM) and the importance of serum lactate dehydrogenase (LDH). Leuk Res 34(10):1340–1343

    Article  CAS  PubMed  Google Scholar 

  92. Kastritis E et al (2011) No significant improvement in the outcome of patients with Waldenstrom’s macroglobulinemia treated over the last 25 years. Am J Hematol 86(6):479–483

    Article  PubMed  Google Scholar 

  93. Castillo JJ et al (2014) Survival trends in Waldenstrom macroglobulinemia: an analysis of the Surveillance, Epidemiology and End Results database. Blood 123(25):3999–4000

    Article  CAS  PubMed  Google Scholar 

  94. Kristinsson SY et al (2013) Patterns of survival in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia: a population-based study of 1,555 patients diagnosed in Sweden from 1980 to 2005. Am J Hematol 88(1):60–65

    Article  PubMed  Google Scholar 

  95. Vallumsetla N et al (2014) Outcomes of young patients with Waldenstrom macroglobulinemia (WM). J Clin Oncol 32(15_suppl)

    Google Scholar 

  96. Garcia-Sanz R et al (2001) Waldenstrom macroglobulinaemia: presenting features and outcome in a series with 217 cases. Br J Haematol 115(3):575–582

    Article  CAS  PubMed  Google Scholar 

  97. Kyle RA et al (2012) Progression in smoldering Waldenstrom macroglobulinemia: long-term results. Blood 119(19):4462–4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baehring JM et al (2008) Neurological manifestations of Waldenstrom macroglobulinemia. Nature clinical practice. Neurology 4(10):547–556

    CAS  PubMed  Google Scholar 

  99. Bing JAN (1936) Two Cases of Hyperglobulinaemia with affection of the central nervous system on a toxi-infectious basis. Acta Medica Scand 88:492–506

    Google Scholar 

  100. Singh A et al (1993) Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J Clin Investig 91(1):251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ciccarelli BT et al (2011) Hepcidin is produced by lymphoplasmacytic cells and is associated with anemia in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 11(1):160–163

    Article  CAS  PubMed  Google Scholar 

  102. Stone MJ, Pascual V (2010) Pathophysiology of Waldenstrom’s macroglobulinemia. Haematologica-the Hematology Journal 95(3):359–364

    Article  CAS  PubMed  Google Scholar 

  103. Menke MN et al (2006) Hyperviscosity-related retinopathy in waldenstrom macroglobulinemia. Arch Ophthalmol 124(11):1601–1606

    Article  PubMed  Google Scholar 

  104. Banwait R et al (2011) The role of 18F-FDG PET/CT imaging in Waldenstrom macroglobulinemia. Am J Hematol 86(7):567–572

    Article  PubMed  Google Scholar 

  105. Kriangkum J et al (2004) Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood 104(7):2134–2142

    Article  CAS  PubMed  Google Scholar 

  106. Dimopoulos MA et al (2009) Update on treatment recommendations from the fourth international workshop on Waldenstrom’s Macroglobulinemia. J Clin Oncol Official J Am Soc Clin Oncol 27(1):120–126

    Article  Google Scholar 

  107. Owen RG et al (2013) Response assessment in Waldenstrom macroglobulinaemia: update from the VIth international workshop. Br J Haematol 160(2):171–176

    Article  PubMed  Google Scholar 

  108. Gertz MA et al (2009) Clinical value of minor responses after 4 doses of rituximab in Waldenstrom macroglobulinaemia: a follow-up of the eastern cooperative oncology group E3A98 trial. Br J Haematol 147(5):677–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Treon SP et al (2011) Attainment of complete/very good partial response following rituximab-based therapy is an important determinant to progression-free survival, and is impacted by polymorphisms in FCGR3A in Waldenstrom macroglobulinaemia. Br J Haematol 154(2):223–228

    Article  PubMed  Google Scholar 

  110. Ghobrial IM et al (2004) Initial immunoglobulin M ‘Flare’ after rituximab therapy in patients diagnosed with Waldenstrom macroglobulinemia an eastern cooperative oncology group study. Cancer 101(11):2593–2598

    Article  CAS  PubMed  Google Scholar 

  111. Varghese AM et al (2009) Assessment of bone marrow response in Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma 9(1):53–55

    Article  PubMed  Google Scholar 

  112. Barakat FH et al (2011) Residual monotypic plasma cells in patients with waldenstrom macroglobulinemia after therapy. Am J Clin Pathol 135(3):365–373

    Article  PubMed  Google Scholar 

  113. Schwartz J et al (2013) Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apheresis 28(3):145–284

    Article  PubMed  Google Scholar 

  114. Ballestri M et al (2007) Plasma exchange in acute and chronic hyperviscosity syndrome: a rheological approach and guidelines study. Annali dell’Istituto superiore di sanita 43(2):171–175

    PubMed  Google Scholar 

  115. Gertz MA et al (2004) Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an eastern cooperative oncology group study (E3A98). Leukemia Lymphoma 45(10):2047–2055

    Article  CAS  PubMed  Google Scholar 

  116. Dimopoulos MA et al (2005) Predictive factors for response to rituximab in Waldenstrom’s macroglobulinemia. Clin Lymphoma 5(4):270–272

    Article  CAS  PubMed  Google Scholar 

  117. Treon SP (2010) Fcgamma receptor predictive genomic testing and the treatment of indolent non-Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk 10(5):321–322

    Article  PubMed  Google Scholar 

  118. Treon SP et al (2005) Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom’s macroglobulinemia. J Clin Oncol Official J Am Soc Clin Oncol 23(3):474–481

    Article  CAS  Google Scholar 

  119. Treon SP et al (2011) Maintenance Rituximab is associated with improved clinical outcome in rituximab naive patients with Waldenstrom Macroglobulinaemia who respond to a rituximab-containing regimen. Br J Haematol 154(3):357–362

    Article  CAS  PubMed  Google Scholar 

  120. Furman RR et al (2011) A phase II trial of atumumab in subjects with Waldenstrom’s macroglobulinemia. Blood 118(21):1581

    Google Scholar 

  121. Cheson BD (2010) Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol J Am Soc Clin Oncol 28(21):3525–3530

    Article  CAS  Google Scholar 

  122. Wierda WG et al (2010) Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol J Am Soc Clin Oncol 28(10):1749–1755

    Article  CAS  Google Scholar 

  123. Byrd JC et al (2014) Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med 371(3):213–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kapoor P et al (2008) Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br J Haematol 141(2):135–148

    Article  CAS  PubMed  Google Scholar 

  125. Treon SP et al (2009) Long-term outcomes to fludarabine and rituximab in Waldenstrom macroglobulinemia. Blood 113(16):3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Treon SP et al (2009) Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol J Am Soc Clin Oncol 27(23):3830–3835

    Article  CAS  Google Scholar 

  127. Kyle RA et al (1998) Waldenstrom’s macroglobulinemia: A prospective study comparing daily oral versus intermittent chlorambucil. Br J Haematol 102(1):244

    Google Scholar 

  128. Leblond V et al (2013) Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenstrom macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma. J Clin Oncol J Am Soc Clin Oncol 31(3):301–307

    Article  CAS  Google Scholar 

  129. Ghobrial IM (2013) Choice of therapy for patients with Waldenstrom macroglobulinemia. J Clin Oncol J Am Soc Clin Oncol 31(3):291–293

    Article  CAS  Google Scholar 

  130. Leblond V et al (2001) Multicenter, randomized comparative trial of fludarabine and the combination of cyclophosphamide-doxorubicin-prednisone in 92 patients with Waldenstrom macroglobulinemia in first relapse or with primary refractory disease. Blood 98(9):2640–2644

    Article  CAS  PubMed  Google Scholar 

  131. Tedeschi A et al (2012) Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer 118(2):434–443

    Article  CAS  PubMed  Google Scholar 

  132. Laszlo D et al (2010) Rituximab and subcutaneous 2-chloro-2’-deoxyadenosine combination treatment for patients with Waldenstrom macroglobulinemia: clinical and biologic results of a phase II multicenter study. J Clin Oncol J Am Soc Clin Oncol 28(13):2233–2238

    Article  CAS  Google Scholar 

  133. Laszlo D et al (2011) Rituximab and Subcutaneous 2-Chloro-2’-Deoxyadenosine as Therapy in Untreated and Relapsed Waldenstrom’s Macroglobulinemia. Clin Lymphoma Myeloma Leuk 11(1):130–132

    Article  CAS  PubMed  Google Scholar 

  134. Leleu X et al (2009) increased incidence of transformation and myelodysplasia/acute leukemia in patients With Waldenstrom macroglobulinemia treated with nucleoside analogs. J Clin Oncol 27(2):250–255

    Article  PubMed  Google Scholar 

  135. Leleu X et al (2009) Balancing risk versus benefit in the treatment of Waldenstrom’s Macroglobulinemia patients with nucleoside analogue-based therapy. Clin Lymphoma Myeloma 9(1):71–73

    Article  CAS  PubMed  Google Scholar 

  136. Buske C et al (2009) The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia 23(1):153–161

    Article  CAS  PubMed  Google Scholar 

  137. Rummel MJ et al (2013) Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet 381(9873):1203–1210

    Article  CAS  PubMed  Google Scholar 

  138. Treon SP et al (2011) Bendamustine alone and in combination with Cd20-directed monoclonal antibody therapy is active in patients with relapsed or refractory Waldenstrom’s macroglobulinemia. Ann Oncol 22:189

    Google Scholar 

  139. Dimopoulos MA et al (2007) Primary treatment of Waldenstrom macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide. J Clin Oncol 25(22):3344–3349

    Article  CAS  PubMed  Google Scholar 

  140. Dimopoulos MA et al (2012) primary treatment of waldenstrom’s macroglobulinemia with dexamethasone, rituximab and cyclophosphamide (DRC): final analysis of a phase II study. ASH Ann Meeting Abs 120(21):438

    Google Scholar 

  141. Anagnostopoulos A et al (2006) Autologous or allogeneic stem cell transplantation in patients with Waldenstrom’s macroglobulinemia. Biology of blood and marrow transplantation: J Am Soc Blood Marrow Transplant 12(8):845–854

    Article  Google Scholar 

  142. Desikan R et al (1999) High-dose therapy with autologous haemopoietic stem cell support for Waldenstrom’s macroglobulinaemia. Br J Haematol 105(4):993–996

    Article  CAS  PubMed  Google Scholar 

  143. Dreger P et al (1999) Myeloablative radiochemotherapy followed by reinfusion of purged autologous stem cells for Waldenstrom’s macroglobulinaemia. Br J Haematol 106(1):115–118

    Article  CAS  PubMed  Google Scholar 

  144. Dreger P, Schmitz N (2007) Autologous stem cell transplantation as part of first-line treatment of Waldenstrom’s macroglobulinemia. Biology of blood and marrow transplantation: J Am Soc Blood Marrow Transplant 13(5):623–624

    Article  Google Scholar 

  145. Gilleece MH et al (2008) The outcome of haemopoietic stem cell transplantation in the treatment of lymphoplasmacytic lymphoma in the UK: a British Society Bone Marrow Transplantation study. Hematology 13(2):119–127

    Article  PubMed  Google Scholar 

  146. Kyriakou C et al (2010) High-dose therapy and autologous stem-cell transplantation in Waldenstrom macroglobulinemia: the Lymphoma working party of the European Group for blood and marrow transplantation. J Clin Oncol Official J Am Soc Clin Oncol 28(13):2227–2232

    Article  CAS  Google Scholar 

  147. Munshi NC, Barlogie B (2003) Role for high-dose therapy with autologous hematopoietic stem cell support in Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):282–285

    Article  CAS  PubMed  Google Scholar 

  148. Tournilhac O et al (2003) Transplantation in Waldenstrom’s macroglobulinemia–the French experience. Semin Oncol 30(2):291–296

    Article  CAS  PubMed  Google Scholar 

  149. Bachanova V, Burns LJ (2012) Hematopoietic cell transplantation for Waldenstrom macroglobulinemia. Bone Marrow Transplant 47(3):330–336

    Article  CAS  PubMed  Google Scholar 

  150. Gertz MA et al (2012) Stem cell transplant for Waldenstrom macroglobulinemia: an underutilized technique. Bone Marrow Transplant 47(9):1147–1153

    Article  CAS  PubMed  Google Scholar 

  151. Kyriakou C et al (2010) Allogeneic stem-cell transplantation in patients with Waldenstrom macroglobulinemia: report from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol Official J Am Soc Clin Oncol 28(33):4926–4934

    Article  Google Scholar 

  152. Treon SP et al (2009) Lenalidomide and rituximab in Waidenstrom’s macroglobulinemia. Clin Cancer Res 15(1):355–360

    Article  CAS  PubMed  Google Scholar 

  153. Rosenthal et al A Phase 2 Study of Lenalidomide, Rituximab, Cyclophosphamide and Dexamethasone (LR-CD) for Untreated Low Grade Non-Hodgkin Lymphoma Requiring Therapy: Waldenström’s Macroglobulinemia Cohort Results Blood 122(21): p. 4352

    Google Scholar 

  154. Treon SP, Tripsas C, Warren D. Phase I Study of Pomalidomide, Dexamethasone and Rituximab (PDR) in Patients with Relapsed or Refractory Waldenstrom’s Macroglobulenima. Hematological Oncology. 31(S1): p. 536

    Google Scholar 

  155. Treon SP et al (2012) Familial disease predisposition impacts treatment outcome in patients with Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk 12(6):433–437

    Article  PubMed  Google Scholar 

  156. Chen CI et al (2007) Bortezomib is active in patients with untreated or relapsed Waldenstrom’s macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(12):1570–1575

    Article  CAS  PubMed  Google Scholar 

  157. Ghobrial IM et al (2010) Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenstrom Macroglobulinemia. Am J Hematol 85(9):670–674

    Article  CAS  PubMed  Google Scholar 

  158. Dimopoulos MA et al (2013) Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood 122(19):3276–3282

    Article  CAS  PubMed  Google Scholar 

  159. Treon SP et al (2014) Carfilzomib, rituximab and dexamethasone (CaRD) is highly active and offers a neuropathy sparing approach for proteasome-inhibitor based therapy in waldenstrom’s macroglobulinemia. Blood 124(4):503-510

    Google Scholar 

  160. Treon SP et al (2015) Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med 372(15):1430-1440.

    Google Scholar 

  161. Leleu X et al (2007) The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood 110(13):4417–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ghobrial IM et al (2014) Long-term results of the phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory Waldenstrom Macroglobulinemia. Am J Hematol 89(3):237–242

    Article  CAS  PubMed  Google Scholar 

  163. Ghobrial IM et al (2013) Phase I/II trial of everolimus, bortezomib and rituximab in relapsed or relapsed/refractory Waldenstrom’s Macroglobulinemia. Blood 122(21):4402

    Google Scholar 

  164. Roccaro AM et al (2010) Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood 115(3):559–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ghobrial IM et al (2010) Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Clin Cancer Res 16(3):1033–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ghobrial IM et al (2012) A multicenter phase II study of single-agent enzastaurin in previously treated Waldenstrom macroglobulinemia. J Clin Oncol Official J Am Soc Clin Oncol 18(18):5043–5050

    CAS  Google Scholar 

  167. Gopal AK et al (2014) PI3 K delta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 370(11):1008–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sun JY et al (2011) Vorinostat induced cellular stress disrupts the p38 mitogen activated protein kinase and extracellular signal regulated kinase pathways leading to apoptosis in Waldenstrom macroglobulinemia cells. Leukemia Lymphoma 52(9):1777–1786

    Article  CAS  PubMed  Google Scholar 

  169. San-Miguel JF et al (2014) Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol 15(11):1195–1206

    Article  CAS  PubMed  Google Scholar 

  170. Ghobrial IM et al (2013) Results of a phase 2 trial of the single-agent histone deacetylase inhibitor panobinostat in patients with relapsed/refractory Waldenstrom macroglobulinemia. Blood 121(8):1296–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dimopoulos MA et al (2002) Treatment of Waldenstrom’s macroglobulinemia with rituximab. J Clin Oncol Official J Am Soc Clin Oncol 20(9):2327–2333

    Article  CAS  Google Scholar 

  172. Ghobrial IM et al (2009) Phase II Trial of Weekly bortezomib in combination with rituximab in relapsed or relapsed/refractory Waldenstrom’s Macroglobulinemia. Blood 114(22):1067

    Google Scholar 

  173. Veronique L et al (2013) Phase II Trial In advanced waldenstrom macroglobulinemia (WM) patients with bortezomib: interest of addition of dexamethasone to bortezomib on behalf of the french CLL/WM intergroup (NCT 00777738) 122:4359–4359

    Google Scholar 

  174. Tedeschi A et al (2013) Fludarabine, cyclophosphamide, and rituximab in salvage therapy of Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 13(2):231–234

    Article  CAS  PubMed  Google Scholar 

  175. Nguyen-Khac F et al (2013) Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom’s macroglobulinemia. Haematologica 98(4):649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ioakimidis L et al (2009) Comparative Outcomes Following CP-R, CVP-R, and CHOP-R in Waldenstrom’s Macroglobulinemia. Clinical Lymphoma & Myeloma 9(1):62–66

    Article  CAS  Google Scholar 

  177. Dimopoulos MA et al (1994) Primary therapy of waldenstroms macroglobulinemia with 2-chlorodeoxyadenosine. J Clin Oncol 12(12):2694–2698

    CAS  PubMed  Google Scholar 

  178. Liu ES et al (1998) Bolus administration of cladribine in the treatment of Waldenstrom macroglobulinaemia. Br J Haematol 103(3):690–695

    Article  CAS  PubMed  Google Scholar 

  179. Dimopoulos MA et al (1995) Treatment of waldenstroms macroglobulinemia resistant to standard therapy with 2-chlorodeoxyadenosine - identification of prognostic factors. Ann Oncol 6(1):49–52

    CAS  PubMed  Google Scholar 

  180. Dimopoulos MA et al (2003) Treatment of Waldenstrom’s macroglobulinemia with the combination of fludarabine and cyclophosphamide. Leukemia Lymphoma 44(6):993–996

    Article  CAS  PubMed  Google Scholar 

  181. Dimopoulos MA et al (1993) Treatment of Waldenstrom Macroglobulinemia with 2-Chlorodeoxyadenosine. Ann Intern Med 118(3):195–198

    Article  CAS  PubMed  Google Scholar 

  182. Treon SP et al (2005) Extended rituximab therapy in Waldenstrom’s macroglobulinemia. Ann Oncol 16(1):132–138

    Article  CAS  PubMed  Google Scholar 

  183. Treon SP et al (2011) Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab. Blood 118(2):276–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ghobrial IM et al (2010) Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol 28(8):1422–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Treon SP et al (2007) Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: Results of WMCTG trial 03-248. Clin Cancer Res 13(11):3320–3325

    Article  CAS  PubMed  Google Scholar 

  186. Dimopoulos MA et al (2001) Treatment of Waldenstrom’s macroglobulinemia with thalidomide. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 19(16):3596–3601

    CAS  Google Scholar 

  187. Treon SP et al (2008) Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood 112(12):4452–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ghobrial IM et al (2010) Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenstrom macroglobulinemia. J Clin Oncol 28(8):1408–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Braggio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kapoor, P., Ansell, S.M., Braggio, E. (2016). Waldenstrom Macroglobulinemia: Genomic Aberrations and Treatment. In: Roccaro, A., Ghobrial, I. (eds) Plasma Cell Dyscrasias. Cancer Treatment and Research, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-40320-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40320-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40318-2

  • Online ISBN: 978-3-319-40320-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics