Skip to main content

Part of the book series: Particle Technology Series ((POTS,volume 26))

Abstract

The chapter begins with a brief analysis of the advantages and disadvantages of fluidized-bed reactors compared with alternatives such as fixed beds for solid-catalysed gas-phase processes coupled with some general points about reactor operation. The points made are emphasised in the descriptions that follow of the most prominent technologies currently employing gas-solid catalytic reactions. Olefin polymerization is traced from its introduction in the 1960’s to modern-day variants employing condensing-mode operation . Operational problems associated with electrostatic charging of the fluidized polymer particles are discussed. Processes for the oxidation of n-butane to maleic anhydride are presented, particular attention being paid to the DuPont circulating fluidized-bed process which although ultimately ending in failure demonstrated important aspects of plant design and operation. Well-established processes for the ammoxidation of propylene to acrylonitrile are discussed the emphasis being on that developed by Sohio. Processes for the production of vinyl chloride monomer and vinyl acetate monomer are described briefly. A section on gas-to-liquid technologies describes the classic Synthol process as well as more recent developments converting synthesis gas to methanol and thence to gasoline and light olefins. The chapter concludes with a consideration of fluidized catalytic cracking , arguably the most important catalytic reaction in all industry. In each case the emphasis is on process chemistry, catalyst formulation, reactor configuration and operation and reactor/process modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alizadeh M, Mostoufi N, Pourmahdian S (2004) Modeling of fluidized-bed reactor of ethylene polymerization. Chem Eng J 97:27–35

    Article  Google Scholar 

  • Astarita G, Sandler SI (1984) Kinetic and thermodynamic lumping of multicomponent mixtures. Elsevier, Amsterdam

    Google Scholar 

  • Baker MJ, Couves JW, Griffin KG, Johnston P, McNicol JC, Salem GF (2003) Process for making a catalyst. US Patent 7053024

    Google Scholar 

  • Bergna HE (1988) US Patent 4,769,477

    Google Scholar 

  • Berruti F, Kalogerakis N (1989) Modelling the internal flow structure of circulating fluidized beds. Can J Chem Eng 67:1010–1014

    Article  Google Scholar 

  • Blum PR, Nicholas ML (1982) US Patent 4,317,778

    Google Scholar 

  • Boland D, Geldart D (1971) Electrostatic charging in gas-fluidized beds. Powder Tech 5:289–297

    Article  Google Scholar 

  • Bolthrunis CO, Silverman RW, Ferrani DC (2004) Rocky road to commercialization: breakthroughs and challenges in the commercialization of fluidized-bed reactors. In: Fluidization XI. Engineering Conferences International, New York, pp 547–554

    Google Scholar 

  • Brazdil JF (2005) Acrylonitrile, Ullman’s Encyclopedia of industrial chemistry. Weinheim-Wiley-VCH, London

    Google Scholar 

  • Burdett I D, Eisinger RS, Cai P, Lee KH (2001) Gas-phase fluidization technology for production of polyolefins. In: Fluidization X. United Engineering Foundation, New York, pp 39–52

    Google Scholar 

  • Centi G (1993) Vanadyl pyrophosphate—a critical overview. Catal Today 16:5–26

    Article  Google Scholar 

  • Centi G, Fornasari G, Trifiro F (1985) n-butane oxidation to maleic anhydride on vanadium phosphorus oxides: kinetic analysis with tubular-flow stacked-pellet reactor. Ind Eng Chem Proc Des Dev 24:32

    Article  Google Scholar 

  • Chang AF, Pashikanti K, Liu YA (2012) Refinery engineering: integrated process modelling and optimization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Chen Y-M (2003) Applications of fluidized catalytic cracking. In: Chapter 14 in handbook of fluidization and fluid-particle systems. Marcel Dekker, New York

    Google Scholar 

  • Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Recent advancements in ethylene and propylenre production using the UOP/Hydro MTO process. Catal Today 106:103–107

    Article  Google Scholar 

  • Chinh J-C, Filippelli MCH, Newton D, Power MB (1998) US Patent 5,733,510

    Google Scholar 

  • Chiusoli GP, Maitlis PM (2008) Metal catalysis in industrial organic processes. RSC Publishing, Cambridge

    Google Scholar 

  • Choi K-Y, Ray WH (1985) The dynamic behaviour of fluidized bed reactors for solid catalysed gas phase olefin polymerization. Chem Eng Sci 40:2261–2279

    Article  Google Scholar 

  • Contractor RM (1999) DuPont’s CFB technology for maleic anhydride. Chem Eng Sci 54:5627–5632

    Article  Google Scholar 

  • Contractor RM, Sleight AW (1987) Maleic anhydride from C-4 feedstocks using fluidized-bed reactors. Catal Today 1:587–607

    Article  Google Scholar 

  • Cui HP, Mostoufi N, Chaouki J (2000) Characterization of dynamic gas-solid distribution in fluidized beds. Chem Eng J 79:135–143

    Article  Google Scholar 

  • Davidson JF, Harrison D (1963) Fluidised particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Dente M, Pierucci S, Tronconi E, Cecchini M, Ghelfi F (2003) Selective oxidation of n-butane to maleic anhydride in fluid-bed reactors: detailed kinetic investigation and reactor modelling. Chem Eng Sci 58:643–648

    Article  Google Scholar 

  • Dimian AC, Bildeak CS (2008) Acrylonitrile by propene ammoxidation. In: Chemical process design: computer-aided case studies, pp 313–338

    Google Scholar 

  • Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138:319–344

    Article  Google Scholar 

  • Duvenhage DJ, Shingles T (2002) Synthol reactor technology development. Catal Today 71:301–305

    Article  Google Scholar 

  • Fakeeha AH, Solimam MA, Ibrahim AA (2000) Modelling of a circulating fluidized-bed for ammoxidation of propane to acrylonitrile. Chem Eng Proc 39:161–170

    Article  Google Scholar 

  • Feng W, Vynckier E, Froment GF (1993) Single event kinetics of catalytic cracking. Ind Eng Chem Res 32:2997

    Google Scholar 

  • Fernandez FAN, L:ona LMF (2004) Multizone circulating reactor modelling for gas-solid polymerization: 1 reactor modelling. J Appl Polym Sci 93(3):1042–1052

    Google Scholar 

  • Fernandez FAN, Lona LMF (2001) Heterogeneous modelling for fluidized-bed polymerization reactor. Chem Eng Sci 56:963–969

    Article  Google Scholar 

  • Fischer D, Frank H, Lux M, Hingman R, Schweier G (2000) US Patent 6,022,837

    Google Scholar 

  • Froment GF (2005) Single event kinetic modelling of complex catalytic processes. Catal Rev Sci Eng 47:83–124

    Article  Google Scholar 

  • Fulks BD, Sawin SP, Aikman CD, Jenkins JM (1989) US Patent 4,876,320

    Google Scholar 

  • Funk GA, Myers D, Vora B (2013) A Different Game Plan. Hydrocarbon engineering, December

    Google Scholar 

  • Gao J, Xu C, Lin S, Yang G, Guo Y (1999) Advanced model for turbulent gas-solid flow and reaction in FCC risers. AIChE J 45:1095–1113

    Article  Google Scholar 

  • Gary JH, Handwerk GE (2001) Petroleum refining: technology and economics, 4th edn. Marcel Dekker, New York

    Google Scholar 

  • Gayubo AG, Aguayo AT, Alonso A, Atutxa A, Bilbao J (2005) Reaction scheme and kinetic modelling for the MTO process over SAPO-18 catalyst. Catal Today 106:112–117

    Article  Google Scholar 

  • Glaeser LC, Brazdil JF, Toft MA (1989) US Patent 4,837,233

    Google Scholar 

  • Goldbig KG, Werther J (1997) Selective synthesis of maleic anhydride by spatial separation of n-butane oxidation and catalytic reoxidation. Chem Eng Sci 52:583–595

    Article  Google Scholar 

  • Goode MG, Hasenberg DM, McNeil TJ, Spriggs TE (1989) US Patent 4,803,251

    Google Scholar 

  • Grasselli RK (1999) Advances and future trends in selective oxidation and ammoxidation catalysts. Catal Today 49:141–153

    Article  Google Scholar 

  • Gupta RK, Kumar V, Srivastava VK (2007) A new generic approach for the modelling of fluid catalytic cracking riser reactor. Chem Eng Sci 62:4510–4528

    Article  Google Scholar 

  • Han IS, Riggs JB, Chung CB (2004) Modelling and optimization of a fluidized catalytic cracking process under full and partial combustion modes. Chem Eng Proc 43:1063–1084

    Article  Google Scholar 

  • Hanna TA (2004) The role of bismuth in the Sohio process. Coord Chem Revs 248:429–440

    Article  Google Scholar 

  • Harandi MN (1993) US Pstent 5,177,279

    Google Scholar 

  • Hartge EU, Poggioda M, Reimers C, Schweir D, Gruhn G, Werther J (2006) Flowsheet simulation of solids processes. KONA 24:146–158

    Google Scholar 

  • Hendrickson G (2006) Electrostatics and gas-phase fluidized-bed polymerization wall sheeting. Chem Eng Sci 61:1041–1064

    Article  Google Scholar 

  • Ibrehema AS, Hussaina MA, Ghasemb NM (2009) Modified mathematical model for gas-phase olefin polymerization in fluidized-bed catalytic reactor. Chem Eng J 149:353–362

    Article  Google Scholar 

  • Idol JD (1959) US Patent 2,904,580

    Google Scholar 

  • Jacob SM, Gross B, Voltz SE, Weekman VW (1976) AIChE J 22:701–713

    Article  Google Scholar 

  • Jazayeri B (2003) Applications for chemical production and processing. In: Yang W-C (ed) Chapter 16 in handbook of fluidization and fluid-particle systems. Marcel Dekker, New York

    Google Scholar 

  • Jiang P, Wei F, Fan L-S (2003) General approaches to reactor design. In: Yang W-C (ed) Chapter 12 in handbook of fluidization and fluid-particle systems. Marcel Dekker, New York

    Google Scholar 

  • Kaarsholm M, Rafii B, Joensen F, Cenni R, Chaouki J, Patience GS (2010) Kinetic modelling of methanol-to-olefin reaction over ZSM-5 in fluid bed. Ind Eng Chem Res 49:29–38

    Article  Google Scholar 

  • Kaminski W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalton Trans 1413–1418

    Google Scholar 

  • Karri SBR, Werther J (2003) Gas distributor and plenum design in fluidized beds. In: Chapter 6 in handbook of fluidization and fluid-particle systems. Marcel Dekker, New York

    Google Scholar 

  • Kiashemshaki A, Mostoufi N, Sotudeh-Gharebagh R (2006) Twi-phase modelling of a gas-phase polyethylene fluidized-bed reactor. Chem Eng Technol 61:3997–4006

    Article  Google Scholar 

  • Knowlton TM (2003) Cyclone separators. In: Chapter 22 in handbook of fluidization and flui-particle systems. Marcel Dekker, New York

    Google Scholar 

  • Kunii D, Levenspiel O (1969) Fluidization engineering. Wiley, New York

    Google Scholar 

  • Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  • Mars P, van Krevelen DW (1954) Chem Eng Sci Suppl 3: 41

    Google Scholar 

  • McAuley KB, Talbot JP, Harris TJ (1994) A comparison of two-phase and well-mixed models for fluidized bed polyethylene reactors. Chem Eng Sci 49:2035

    Article  Google Scholar 

  • McAuley KB, Macdonald DA, McLellan PJ (1995) Effects of operating conditions on stability of gas-phase polyethylene reactors. AIChE J 41:868–879

    Article  Google Scholar 

  • Mills PL, Randall HT, McCracken JS (1999) Redox kinetics of VOPO4 with butane and oxygenusing the TAP reactor system. Chem Eng Sci 54:3709–3722

    Article  Google Scholar 

  • Minchiner A (2014) Made in China. Chem Engineer 872:42–45

    Google Scholar 

  • Mostoufi N, Cui H, Chaouki J (2001) A comparison of two- and single-phase models for fluidized-bed reactors. Ind Eng Chem Res 40:5526–5532

    Article  Google Scholar 

  • Moughrabiah WO, Grace JR, Bi XT (2012) Electrostatics in gas-solid fluidized beds for different particle properties. Chem Eng Sci 75:198–208

    Article  Google Scholar 

  • Park T-Y, Froment GF (2004) Analysis of fundamental reaction rates in the methanol-to-olefin process on ZSM-5 as a basis for reactor design and operation. Ind Eng Chem Res 43:682–689

    Article  Google Scholar 

  • Patience GS (1990) Hydrodynamics and reactor modelling. PhD Dissertation, Ecole Polytechnique de Montreal

    Google Scholar 

  • Patience GS, Bockrath RE (2010) Butane oxidation process development in a circulating fluidized bed. Appl Cat A 376:4–12

    Article  Google Scholar 

  • Patience GS, Bockrath RE, Sullivan JD, Horowitz HS (2007) Pressure calcination of VPO catalyst. Ind Eng Chem Res 46:4374–4381

    Article  Google Scholar 

  • Pitault I, Nevicato D, Forrissier M, Bernaed J-R (1994) Kinetic model besed on a molecular description for catalytic cracking of vacuum gas oil. Chem Eng Sci 49:4249–4262

    Article  Google Scholar 

  • Puettemann A, Hartge EU, Werther J (2012a) Application of flowsheet simulation concept to fluidized-bed reactor modelling. Part I: development of a fluidized-bed reactor model. Chem Eng Proc 60:86–95

    Article  Google Scholar 

  • Puettemann A, Hartge EU, Werther J (2012b) Application of flowsheet simulation concept to fluidized-bed reactor modelling. Part II: application to the selective oxidation of n-butane to maleic anhydride in a riser/regenerator system. Chem Eng Proc 57–58:86–95

    Google Scholar 

  • Pugsley T, Patience GS, Berruti F, Chaouki J (1992) Modelling the catalytic oxidation of n-butane to maleic anhydride in a circulating fluidized-bed reactor. Ind Eng Chem Res 31:2652–2660

    Article  Google Scholar 

  • Riazi MR (2005) Characterization and properties of petroleum frsctions. ASTM, Conshohocken, PA

    Book  Google Scholar 

  • Roy S, Dudukovic MP, Mills PL (2000) A two-phase compartment model of the selective oxidation of n-butane in a circulating fluidized-bed reactor. Catal Today 61:73–85

    Article  Google Scholar 

  • Sadeghbeigi R (2012) Fluid catalytic cracking handbook, 3rd edn. Elsevier, New York

    Google Scholar 

  • Sax NI (1975) Dangerous properties of industrial materials. Van Nostrand Reinhold, New York

    Google Scholar 

  • Secchi AR, Neumann GA, Gambetta R (2013) Gas fluidized bed polymerization. In: Passos ML, Barrozo MAS, Mujumdar AS (eds) Chapter 2 in fluidization engineering: practice. Laval, Canada

    Google Scholar 

  • Shamiri A, Hussain MA, Mjalli FS, Mostoufi N (2011) Dynamic modelling of gas-phase propylene homopolymerization in fluidized-bed reactors. Chem Eng Sci 66:1189–1199

    Article  Google Scholar 

  • Sookai S, Langanhoven PL, Shingles T (2001) Scale-up and commercial reactor fluidization-related experience with Synthol gas-to-liquid fuel dense phase fluidized-bed reactors. In: Fluidization X. United Engineering Foundation, New York, pp 621–626

    Google Scholar 

  • Thompson LM, Bi H, Grace JR (1999) A generalised bubbling turbulent fluidized-bed reactor model. Chem Eng Sci 54:2175–2185

    Article  Google Scholar 

  • Van Ness K, Van Westen HA (1951) Aspects of the constitution of mineral oils. Elsevier, New York

    Google Scholar 

  • Venuto PB, Habib TE (1979) Fluid catalytic cracking with zeolite catalysts. Marcel Dekker, New York

    Google Scholar 

  • Vollert J, Werther J (1994) Mass transfer and reaction behaviour of a circulating fluidized-bed reactor. Chem Eng Technol 17:201–209

    Article  Google Scholar 

  • Voltz SE, Nace DM, Weekman VW (1971) Application of a kinetic model for catalytic cracking. Ind Eng Chem Proc Des Dev 10(4):530–541

    Article  Google Scholar 

  • Weekman VW (1968) A model for fluidized catalytic cracking. Ind Eng Chem Proc Des Dev 7:90

    Google Scholar 

  • Wong R, Pugsley T, Berruti F (1992) Modelling the axial voidage profile and flow structure in the riser of a circulating fluidized bed. Chem Eng Sci 47:2301–2306

    Article  Google Scholar 

  • Xie T, McAuley KB, Hsu CC, Bacon DW (1994) Gas-phase ethylene polymerization: production processes, polymer properties and reactor modelling. Ind Eng Chem Res 33:449–479

    Article  Google Scholar 

  • Yamamoto R, Uetake S, Ohtani Y, Kikuchi Y, Doi K (1998) US Patent 5,753,191

    Google Scholar 

  • Yates JG (1983) Fundamentals of fluidized-bed chemical processes. Butterworths, London

    Google Scholar 

  • Zhou H, Wang Y, Wei F, Wang D, Wang Z (2008) Kinetics of the reactions of the light alkenes over SAPO-34. Appl Catal 348:135–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Yates .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yates, J.G., Lettieri, P. (2016). Catalytic Processes. In: Fluidized-Bed Reactors: Processes and Operating Conditions. Particle Technology Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-39593-7_2

Download citation

Publish with us

Policies and ethics